
System Composer™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ User's Guide
© COPYRIGHT 2019–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Architecture Model Editing
1

Compose Architecture Visually . 1-2
Create an Architecture Model . 1-2
Components . 1-5
Ports . 1-9
Connections . 1-12
Importing Architectures . 1-15

Decompose and Reuse Components . 1-16
Decompose a Component . 1-16
Create a Reference Architecture . 1-18
Use a Reference Architecture . 1-20
Inline a Reference Architecture . 1-21
Create Variants . 1-22

Create Spotlight Views . 1-26

Build an Architecture Model from Command Line 1-29

Create Architecture Views Interactively . 1-37
Create Filtered Views with Grouping Criteria . 1-37
Interactively Add and Remove Elements from Views 1-41
Add or Remove Requirements Links from Views 1-43

Create Architectural Views Programmatically . 1-45
Architecture Views in System Composer with Keyless Entry System 1-45
Find Elements in a Model Using Queries . 1-47

Import and Export Architecture Models . 1-50
Define a Basic Architecture . 1-50
Import a Basic Architecture . 1-51
Extend the Basic Architecture Import . 1-51
Export an Architecture . 1-55
Update Reference Requirement Links from Imported File 1-55

Display Component Hierarchy Using Hierarchy Views 1-58
Switch Between Component Diagram and Hierarchy Diagram 1-58

Requirements
2

Manage Requirements . 2-2

iii

Contents

Interface Management
3

Define Interfaces . 3-2
Create Interface . 3-3
Nested Interfaces . 3-5
Show and Hide Columns in the Interface Editor . 3-6

Assign Interfaces to Ports . 3-7
Associate a Port with an Interface in the Property Inspector 3-7
Select Multiple Ports and Assign an Interface . 3-7
Specify a Source Element or Destination Element for Ports on a Connection

. 3-10
Reconcile Different Interfaces on Connected Ports using an Adapter block

. 3-11

Save, Link, and Delete Interfaces . 3-12

Reference Data Dictionaries . 3-14
Add Referenced Data Dictionaries . 3-14
Use Referenced Data Dictionaries for Projects with Multiple Models 3-15

Interface Adapter . 3-19
Map Similar Interfaces . 3-19
Use Unit Delay to Break Algebraic Loop . 3-19
Use Rate Transition Between Simulink Behaviors 3-20

Define Architectural Properties
4

Define Profiles and Stereotypes . 4-2
Create a Profile and Add Stereotypes . 4-3
Add Properties with Stereotypes . 4-3
Default Stereotypes . 4-5
Stereotype-Based Styling . 4-7

Use Stereotypes and Profiles . 4-10
Import Profiles . 4-10
Apply a Stereotype . 4-12
Remove a Stereotype . 4-19
Extend a Stereotype . 4-19

Use Simulink Models with System Composer
5

Implement Component Behavior in Simulink . 5-2
Create a Simulink Behavior Model . 5-2
Link to an Existing Simulink Behavior Model . 5-4

iv Contents

Create a Simulink Behavior from Template for a Component 5-5

Add Stateflow Chart Behavior to Architecture Component 5-7
Add State Chart Behavior to a Component . 5-7
Inline Stateflow Chart Behavior . 5-10

Extract Architecture from Simulink Model . 5-12

Define Sequence Diagrams . 5-16
Add Lifelines and Messages . 5-16
Add Fragments and Operands . 5-19
View the Define Sequence Diagrams Example . 5-25

Use Sequence Diagrams in the Views Gallery . 5-27
Create a Sequence Diagram . 5-27
Create Sequence Diagram Gates . 5-28
Add Child Lifelines in a Sequence Diagram . 5-29
Co-Create Components . 5-30
Synchronize Between the Sequence Diagram and the Model 5-31
Create Messages in the Sequence Diagram . 5-32
Click and Drag from the Model Browser . 5-33
Use Sequence Diagrams in the Views Gallery Example 5-34
Create a Sequence Diagram from a View . 5-34

Analyze Architecture Model
6

Create and Manage Allocations . 6-2

Allocate Architectures in a Tire Pressure Monitoring System 6-5

Analyze Architecture . 6-10
Set Properties for Analysis . 6-10
Create a Model Instance for Analysis . 6-12
Write Analysis Function . 6-14
Run Analysis Function . 6-15

Battery Sizing and Automotive Electrical System Analysis 6-17

Modeling System Architecture of Small UAV . 6-19

Link and Trace Requirements . 6-25

Modeling System Architecture of Keyless Entry System 6-31

Extract the Architecture of a Simulink Model Using System Composer
. 6-33

Import and Export Architectures . 6-39

Import System Composer Architecture Using Model Builder 6-41

v

Simulating Mobile Robot with System Composer Workflow 6-46

Software Architectures
7

Author Software Architectures . 7-2
Create a Software Architecture Model . 7-2
Build a Simple Software Architecture Model . 7-3

Simulate and Deploy Software Architectures . 7-6

Modeling the Software Architecture of a Throttle Position Control System
. 7-11

vi Contents

Architecture Model Editing

• “Compose Architecture Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-16
• “Create Spotlight Views” on page 1-26
• “Build an Architecture Model from Command Line” on page 1-29
• “Create Architecture Views Interactively” on page 1-37
• “Create Architectural Views Programmatically” on page 1-45
• “Import and Export Architecture Models” on page 1-50
• “Display Component Hierarchy Using Hierarchy Views” on page 1-58

1

Compose Architecture Visually
In this section...
“Create an Architecture Model” on page 1-2
“Components” on page 1-5
“Ports” on page 1-9
“Connections” on page 1-12
“Importing Architectures” on page 1-15

Create and edit visual diagrams to represent system architecture in System Composer™. Use visual
architecture elements, components, ports, and connections in the system composition. Model
hierarchy in architecture by decomposing components. Navigate through the hierarchy.

Create an Architecture Model
Start with a blank architecture model to model physical and logical architecture of a system.

A System Composer architecture represents a system of components and how they interface with
each other structurally and behaviorally. You can represent specific architectures using alternate
views.

Different types of architectures describe different aspects of systems::

• Functional architecture describes the flow of data in a system.
• Logical architecture describes the intended operation of a system.
• Physical architecture describes the platform or hardware in a system.

A System Composer model is the .slx file that contains architectural information, including
components, ports, connectors, interfaces, and behaviors.

An architecture model includes a top-level architecture that holds the composition of the system. This
top-level architecture also allows definition of interfaces of this system with other systems. Use one of
these methods to create an architecture model:

• At the command line, type

systemcomposer

Select Architecture Model.

1 Architecture Model Editing

1-2

• From a Simulink® model or a System Composer architecture model. On the Simulation tab, select

New , and then select Architecture .

 Compose Architecture Visually

1-3

• At the MATLAB® command line, type:

archModel = new_system('ModelName','Architecture');
open_system(archModel)

where ModelName is the name of the new model.

Save the architecture model. On the Simulation tab, select Save All . The architecture model is
saved as an .slx file.

The architecture model includes a top-level architecture that holds the composition of the system.
This top-level architecture also allows definition of interfaces of this system with other systems. The
composition represents a structured parts list — a hierarchy of components with their interfaces and
interconnections. Edit the composition in the Composition Editor.

1 Architecture Model Editing

1-4

This example shows a motion control architecture, where a sensor obtains information from a motor,
feeds that information to a controller, which in turn processes this information to send a control
signal to the motor so that it moves in a certain way. You can start with this rough description and
add component properties, interface definitions, and requirements as the design progresses.

Components
A component is a nontrivial, nearly-independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architecture element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

The Component element in System Composer can represent a component at any level of the system
hierarchy, whether it is a major system component that encompasses many subsystems, such as a
controller with its hardware and software, or a component at the lowest level of hierarchy, such as a
software module for messaging.

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts.

Add Components

Use one of these methods to add components to the architecture:

• Draw a component — In the canvas, left-click and drag the mouse to create a rectangle. Release
the mouse button to see the component outline. Select the Component block option to commit.

 Compose Architecture Visually

1-5

• Create a single component from the palette —

• Create multiple components from the palette —

1 Architecture Model Editing

1-6

Name a Component

Each component must have a name that is unique within the same architecture level. The name of the
component is highlighted upon creation so you can directly type the name. To change the name of a
component, click the component and then click its name.

 Compose Architecture Visually

1-7

Move a Component

Move a component simply by clicking and dragging it. Blue guidelines may appear to help align the
component with other components.

Resize a Component

Resize a component by dragging corners.

1 Architecture Model Editing

1-8

1 Hover the pointer over a corner to see the double arrow.

2 Left-click the corner and drag while holding the mouse button down. If you want to resize the
component proportionally, hold the Shift button as well.

3 Release the mouse button when the component reaches the size you want.

Delete a Component

Click a component and press Delete to delete it. To delete multiple components, select them while
holding the Shift key down, then press Delete or right-click and select Delete from the context
menu.

Ports
A port is a node on a component or architecture that represents a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.

There are different types of ports:

• Component ports are interaction points on the component to other components.
• Architecture ports are ports on the boundary of the system, whether the boundary is within a

component or the overall architecture model.

For example, a sensor might have data ports to communicate with a motor and a controller. Its input
port takes data from the motor, and the output port delivers data to the controller. You can specify
data properties by defining an interface as described in “Define Interfaces” on page 3-2.

Add a Component Port

Represent the relationship between components by defining directional interface ports. You can
organize the diagram by positioning ports on any edge of the component, in any position.

1 Pause over the side of a component. A + sign and a port outline appear.

 Compose Architecture Visually

1-9

2 Click the port outline. The component is shaded blue and a port arrow appears.

3 Click the arrow to commit the port. You can also name the port at this point.

An output port is shown with the icon and an input port is shown with the icon. By default, a
port created on the top or left edge of a component is an input port, and a port created on the bottom
or right edge is an output port. To designate port direction at creation, after you click the edge, pause
over the arrow outline to see direction options. Select Input or Output before committing the port.

You can move any port to any component edge after creation.

Add an Architecture Port

You can also create a port for the architecture that contains components. These system ports carry
the interface of the system with other systems. Pause on any edge of the system box and click when
the + sign appears. Click the left side to create input ports and click the right side to create output
ports.

1 Architecture Model Editing

1-10

Name a Port

Every port is created with a name. To change the name, click it and edit.

Ports of a component must have unique names.

 Compose Architecture Visually

1-11

Move a Port

You can move a port to any side of a component. Select the port and use arrow keys.

Arrow Key Original Port Edge Port Movement
Up Left or right If below other ports on the same

edge, move up, if not, move to
the top edge

Top or bottom No action
Right Top or bottom If to the left of other ports on

the same edge, move right, if
not, move to the right edge

Left or right No action
Down Left or right If above other ports on the same

edge, move down, if not, move
to the bottom edge

Top or bottom No action
Left Top or bottom If to the right of other ports on

the same edge, move left, if not,
move to the left edge

Left or right No action

The spacing of the ports on one side is automatic. There can be a combination of input and output
ports on the same edge.

Delete a Port

Delete a port by selecting it and pressing the Delete button.

Connections
Connectors are lines that provide connections between ports. Connectors describe how information
flows between components or architectures. A connector allows two components to interact without
defining the nature of the interaction. Set an interface on a port to define how the components
interact.

Connections are visual representations of data flow from an output port to an input port. For
example, a connection from a motor to a sensor carries positional information.

Connect Existing Ports

Connect two ports by dragging a line:

1 Click one of the ports.
2 Keep the mouse button down while dragging a line to the other port.
3 Release the mouse button at the destination port. A black line indicates the connection is

complete. A red-dotted line appears if the connection is incomplete.

1 Architecture Model Editing

1-12

You can take these steps in both directions — input port to output port, or output port to input port.
You cannot connect ports that have the same direction.

A connection between an architecture port and a component port is shown with tags instead of lines.

Connect Components Without Ports

To quickly create ports and connections at the same time, drag a line from one component edge to
another. The direction of this connection depends on which edges of the components are used - left
and top edges are considered inputs, right and bottom edges are considered outputs. You can also
perform this operation from an existing port to a component edge.

 Compose Architecture Visually

1-13

You can create a connection between an edge that is assumed to be an input only with an edge that is
assumed to be an output. For example, you cannot connect a top edge, which is assumed to be an
input, with another top edge, unless one of them already has an output port.

Branch Connections

Connect an output port to multiple input ports by branching a connection. To branch, right-click an
existing connection and drag to an input port while holding the mouse button down. Release the
button to commit the new connection.

Create New Components Through Connections

If you start a connection from an output port and release the mouse button without a destination
port, a new component tentatively appears. Accept the new component by clicking it.

1 Architecture Model Editing

1-14

Importing Architectures
By combining the programmatic APIs of System Composer with MATLAB support for loading and
parsing many different file and databased formats, you can import external architecture descriptions
into System Composer. For details, see “Import and Export Architecture Models” on page 1-50.

You can setup a profile with stereotypes ahead of time to capture the architecture properties
represented in such descriptions. For details, see “Define Profiles and Stereotypes” on page 4-2.

Subsequently, you can use MATLAB programming to create and customize the various architectural
elements through the set of programmatic APIs. For details, see “Build an Architecture Model from
Command Line” on page 1-29.

See Also
Functions
addComponent | addPort | connect | createModel | exportModel | importModel

Blocks
Component

More About
• “Decompose and Reuse Components” on page 1-16
• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-7

 Compose Architecture Visually

1-15

Decompose and Reuse Components
Every component in an architecture model can have its own design, or even several design
alternatives. These designs can be architectures modeled in System Composer or behaviors modeled
in Simulink. Engineering systems often use the same component design in multiple places. A common
component, such as power switch, can be part of all electrical components. You can reuse a
component in System Composer within the same model as well as across architecture models.

Decompose a Component
A component can have its own architecture. Double-click a component to view or edit its architecture.
When you view the component at this level, its ports appear as architecture ports. You can use the

navigation arrows on the toolbar to move through the hierarchy. Use the Model
Browser to view component hierarchy.

1 Architecture Model Editing

1-16

You can add components, ports, and connections at this level to define the architecture.

You can also make a new component from a group of components.

1 Select the components. Either click and drag a rectangle, or select multiple components by
holding the Shift button down.

 Decompose and Reuse Components

1-17

2 Create a component from the selected elements using Architecture > Create Component

As a result, the new component has the selected components, their ports, and connections as part of
its architecture. Any unconnected ports and connections to components outside of the selection
become ports on the new component.

Any component that has its own architecture displays a preview of its contents.

Create a Reference Architecture
Some projects use the same, detailed component in multiple places, and require the design of such a
component to be tightly managed. You can create a reference architecture to reuse the architectural
definition of a component in the same architecture model or across several architecture models.
Create such a reference architecture using this procedure:

1 Right-click the component and select Save as Architecture Model.

1 Architecture Model Editing

1-18

2 Provide a name for the model. By default, the reference architecture is saved in the same folder
as the architecture model. Browse for or type the full path if you want to save it in a different
folder.

System Composer creates an architecture model with the provided name, and links the component to
the new model. The linked model is indicated in the name of the component between the <> signs.

 Decompose and Reuse Components

1-19

All architecture models can reference this new architecture model through linked components.

Use a Reference Architecture
You can use a reference architecture, saved in a separate file, by linking to it from a component.
Right-click the component and select Link to Model. You can also use the Create Reference option
in the element palette directly to create a component that uses a reference architecture.

To link a selected component to an existing architecture model, right-click the component and select
Link to Model.

1 Architecture Model Editing

1-20

Provide the full path to the reference architecture. If the linked component has its own ports and
components, this content is deleted during linking and replaced by that of the reference architecture.
The ports of the linked component become the architecture ports in the reference architecture.

Any change made in a reference architecture is immediately reflected in the models that link to it. If
you move or rename the reference architecture, the link becomes invalid and the linked component
displays an error. Link the component to a valid reference architecture.

Inline a Reference Architecture
In some cases, you have to deviate from the reference architecture for a single component. For
example, a comprehensive sensor model, referenced from a local component, may include too many
features for the motion control architecture at hand and require simplification for that architecture
only. In this case, you can inline the reference architecture to make local changes possible. Right-
click a linked component and select Inline Model.

 Decompose and Reuse Components

1-21

This operation provides two options:

• Interface and subcomponents — Ports, interfaces, and subcomponents of the reference
architecture are copied to the component.

• Interface only — The ports and designated interfaces of the reference architecture are reflected
on the component, but the composition is blank.

Once the reference architecture is inlined, you can start making changes without affecting other
architectures. However, you cannot propagate local changes to the reference architecture. If you link
to the reference architecture again, local changes are lost.

To inline a Stateflow® Chart behavior, see “Inline Stateflow Chart Behavior” on page 5-10.

Create Variants
A component can have multiple design alternatives, or variants. A variant is one of many structural or
behavioral choices in a variant component. Use variants to quickly swap different architectural
designs for a component while performing analysis. A variant control is a string that controls the
active variant choice. Set the variant control to programmatically control which variant is active.

You can model variations for any component in a single architecture model. You can define a mix of
behaviors (defined in a Simulink model) and architectures (defined in a System Composer
architecture model) as variant choices. For example, a component may have two variant options that
represent two alternate structural decompositions.

Add variants to a component. Right-click the component and select Add Variant Choice.

1 Architecture Model Editing

1-22

The badge on the component indicates that it is a variant, and a variant choice is added to the
existing composition. Double-click the component to see variant choices.

 Decompose and Reuse Components

1-23

You can add more variant choices to a variant component using the Add Variant Choice option.

Open and edit the variant by right-clicking and selecting Variant > Open > <variant_name> from
the component context menu.

You can also designate a component as a variant upon creation using the object in the toolstrip.
This creates two variant choices by default.

Activate a specific variant choice using the context menu of the block. Right-click and select Variant
> Label Mode Active Choice > <variant_name>. The active choice is displayed in the header of
the block.

1 Architecture Model Editing

1-24

See Also
Functions
addChoice | addVariantComponent | inlineComponent | linkToModel | makeVariant |
saveAsModel | setActiveChoice

Blocks
Reference Component | Variant Component

More About
• “Create a Simulink Behavior Model” on page 5-2
• “Link to an Existing Simulink Behavior Model” on page 5-4
• “Create Spotlight Views” on page 1-26

 Decompose and Reuse Components

1-25

Create Spotlight Views
Any system being designed for a real application is usually very large and complex. It typically
consists of many complex functions working together to fulfill the system requirements. In the
process of designing and analyzing such architectures, you must understand existing components and
what needs to be added. A spotlight view is a simplified view of a model that captures the upstream
and downstream dependencies of a specific component of interest.

To create a spotlight from the composition, select the component of interest in the canvas, right-click
and select Create Spotlight from Component either from the Architecture menu or the context
menu.

1 Architecture Model Editing

1-26

The spotlight view launches and shows all model elements to which the component connects in a
transparent hierarchy. The spotlight diagram is laid out automatically and cannot be edited.

While in the spotlight view, you can put another component in the spotlight. Select the component

and click .

 Create Spotlight Views

1-27

You can make the hierarchy and connectivity of a component visible at all times during model
development by opening the spotlight view in a separate window. Show the spotlight view in a
dedicated window by first selecting Open in New Window in the component context menu and then
creating the Spotlight view. Spotlight views are dynamic. Any change in the composition refreshes
any open spotlight views. Spotlight views are transient—they are not saved with the model.

You can return to the architecture model view by clicking the icon. To view the architecture at
the level of a particular component, select the component and click the icon.

Note More sophisticated filtering conditions can be created using the Architecture Views Gallery. For
details, see “Create Architecture Views Interactively” on page 1-37.

See Also

More About
• “Compose Architecture Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-16

1 Architecture Model Editing

1-28

Build an Architecture Model from Command Line
This example shows how to build an architecture model using the System Composer™ API.

Prepare Workspace

Clear all profiles from the workspace.

systemcomposer.profile.Profile.closeAll;

Build a Model

To build a model, add a data dictionary with interfaces and interface elements, then add components,
ports, and connections. After the model is built, you can create custom views to focus on a specific
concern. You can also query the model to collect different model elements according to criteria you
specify.

Add Components, Ports, and Connections

Create the model and extract its architecture.

model = systemcomposer.createModel('mobileRobotAPI');
arch = model.Architecture;

Create data dictionary and add an interface. Link the interface to the model.

dictionary = systemcomposer.createDictionary('SensorInterfaces.sldd');
interface = addInterface(dictionary,'GPSInterface');
interface.addElement('Mass');
linkDictionary(model,'SensorInterfaces.sldd');

Add components, ports, and connections. Set the interface to ports, which you will connect later.

components = addComponent(arch,{'Sensor','Planning','Motion'});
sensorPorts = addPort(components(1).Architecture,{'MotionData','SensorData'},{'in','out'});
sensorPorts(2).setInterface(interface);

planningPorts = addPort(components(2).Architecture,{'Command','SensorData1','MotionCommand'},{'in','in','out'});
planningPorts(2).setInterface(interface);

motionPorts = addPort(components(3).Architecture,{'MotionCommand','MotionData'},{'in','out'});

Connect components with an interface rule. This rule connects ports on components that share the
same interface.

c_sensorData = connect(arch,components(1),components(2),'Rule','interfaces');
c_motionData = connect(arch,components(3),components(1));
c_motionCommand = connect(arch,components(2),components(3));

Save Data Dictionary

Save the changes to the data dictionary.

dictionary.save();

Add and Connect an Architecture Port

Add an architecture port on the architecture.

 Build an Architecture Model from Command Line

1-29

archPort = addPort(arch,'Command','in');

The connect command requires a component port as argument. Obtain the component port and
connect:

compPort = getPort(components(2),'Command');
c_Command = connect(archPort,compPort);

Save the model.

save(model)

Open the model

open_system(gcs);

Arrange the layout by pressıng Ctrl+Shift+A or using the following command:

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI');

Create and Apply Profile and Stereotypes

Profiles are xml files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values. Along with System Composer’s built-in
analysis capabilities, stereotypes can guide optimizations of your system for performance, cost, and
reliability.

Create a Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile('GeneralProfile');

Create a stereotype that applies to all element types:

elemSType = addStereotype(profile,'projectElement');

Create stereotypes for different types of components. These types are dictated by design needs and
are up to your discretion:

1 Architecture Model Editing

1-30

pCompSType = addStereotype(profile,'physicalComponent','AppliesTo','Component');
sCompSType = addStereotype(profile,'softwareComponent','AppliesTo','Component');

Create a stereotype for connections:

sConnSType = addStereotype(profile,'standardConn','AppliesTo','Connector');

Add Properties

Add properties to stereotypes. You can use properties to capture metadata for model elements and
analyze non-functional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID','Type','uint8');
addProperty(elemSType,'Description','Type','string');
addProperty(pCompSType,'Cost','Type','double','Units','USD');
addProperty(pCompSType,'Weight','Type','double','Units','g');
addProperty(sCompSType,'develCost','Type','double','Units','USD');
addProperty(sCompSType,'develTime','Type','double','Units','hour');
addProperty(sConnSType,'unitCost','Type','double','Units','USD');
addProperty(sConnSType,'unitWeight','Type','double','Units','g');
addProperty(sConnSType,'length','Type','double','Units','m');

Save the Profile

save(profile);

Apply Profile to Model

Apply the profile to the model:

applyProfile(model,'GeneralProfile');

Apply stereotypes to components. Some components are physical components, and others are
software components.

applyStereotype(components(2),'GeneralProfile.softwareComponent')
applyStereotype(components(1),'GeneralProfile.physicalComponent')
applyStereotype(components(3),'GeneralProfile.physicalComponent')

Apply the connector stereotype to all connections:

batchApplyStereotype(arch,'Connector','GeneralProfile.standardConn');

Apply the general element stereotype to all connectors and ports:

batchApplyStereotype(arch,'Component','GeneralProfile.projectElement');
batchApplyStereotype(arch,'Connector','GeneralProfile.projectElement');

Set properties for each component:

setProperty(components(1),'GeneralProfile.projectElement.ID','001');
setProperty(components(1),'GeneralProfile.projectElement.Description','''Central unit for all sensors''');
setProperty(components(1),'GeneralProfile.physicalComponent.Cost','200');
setProperty(components(1),'GeneralProfile.physicalComponent.Weight','450');
setProperty(components(2),'GeneralProfile.projectElement.ID','002');
setProperty(components(2),'GeneralProfile.projectElement.Description','''Planning computer''');
setProperty(components(2),'GeneralProfile.softwareComponent.develCost','20000');
setProperty(components(2),'GeneralProfile.softwareComponent.develTime','300');

 Build an Architecture Model from Command Line

1-31

setProperty(components(3),'GeneralProfile.projectElement.ID','003');
setProperty(components(3),'GeneralProfile.projectElement.Description','''Motor and motor controller''');
setProperty(components(3),'GeneralProfile.physicalComponent.Cost','4500');
setProperty(components(3),'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical:

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect them to the architecture and to each other, applying a connector stereotype. Hierarchy in an
architecture diagram creates an additional level of detail that specifies how components behave
internally.

motionArch = components(3).Architecture;
motion = motionArch.addComponent({'Controller','Scope'});

controllerPorts = addPort(motion(1).Architecture,{'controlIn','controlOut'},{'in','out'});
controllerCompPortIn = motion(1).getPort('controlIn');
controllerCompPortOut = motion(1).getPort('controlOut');

scopePorts = addPort(motion(2).Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motion(2).getPort('scopeIn');
scopeCompPortOut = motion(2).getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);
c_planningScope = connect(scopeCompPortOut,motionPorts(2));
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,'GeneralProfile.standardConn');

Save the model.

save(model)

Arrange the layout by pressıng Ctrl+Shift+A or using the following command:

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI/Motion');

1 Architecture Model Editing

1-32

Create a Model Reference

Model references are useful to organize large models hierarchically and allow you to define
architectures or behaviors once and reuse it. When a component references another model, any
existing ports on the component are removed and ports that exist on the referenced model will
appear on the component.

Create a new System Composer model. Convert the Sensor component into a reference component
to reference the new model. To add additional ports on the Sensor component, you must update the
referenced model mobileSensor.

newModel = systemcomposer.createModel('mobileSensor');
newArch = newModel.Architecture;
newComponents = addComponent(newArch,'ElectricSensor');
save(newModel);

linkToModel(components(1),'mobileSensor');

Apply a stereotype to the linked reference model's architecture and component.

referenceModel = get_param('mobileSensor','SystemComposerModel');
referenceModel.applyProfile('GeneralProfile');

 Build an Architecture Model from Command Line

1-33

referenceModel.Architecture.applyStereotype('GeneralProfile.softwareComponent');
batchApplyStereotype(referenceModel.Architecture,'Component','GeneralProfile.projectElement')

Add ports and connections to the reference component.

sensorPorts = addPort(components(1).Architecture,{'MotionData','SensorData'},{'in','out'});
sensorPorts(2).setInterface(interface)
connect(arch,components(1),components(2),'Rule','interfaces');
connect(arch,components(3),components(1));

Save the models.

save(referenceModel)
save(model)

Make a Variant Component

You can convert the Planning component into a variant component using the makeVariant
function. The original component is embedded within a variant component as one of the available
variant choices. You can design other variant choices within the variant component and toggle the
active choice. Variant components allow you to choose behaviorial designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(components(2));

Add an additional variant choice named PlanningAlt. The second argument defines the name, and
the third argument defines the label. The label identifies the choice. The active choice is controlled by
the label.

choice2 = addChoice(variantComp,{'PlanningAlt'},{'PlanningAlt'});

Create the necessary ports on PlanningAlt.

setActiveChoice(variantComp,choice2)
planningAltPorts = addPort(choice2.Architecture,{'Command','SensorData1','MotionCommand'},{'in','in','out'});
planningAltPorts(2).setInterface(interface);

Make PlanningAlt the active variant.

setActiveChoice(variantComp,'PlanningAlt')

Arrange the layout by pressıng Ctrl+Shift+A or using the following command:

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI/Planning');

1 Architecture Model Editing

1-34

Save the model.

save(model)

Clean Up

Uncomment the following code and run to clean up the artifacts created by this example:

% bdclose('mobileRobotAPI')
% bdclose('mobileSensor')
% Simulink.data.dictionary.closeAll
% systemcomposer.profile.Profile.closeAll
% delete('Profile.xml')
% delete('SensorInterfaces.sldd')

See Also
Functions
addChoice | addComponent | addElement | addInterface | addPort | addProperty |
addStereotype | applyProfile | applyStereotype | batchApplyStereotype | closeAll |
connect | createDictionary | createModel | createProfile | getPort | linkDictionary |
linkToModel | makeVariant | save | save | setActiveChoice | setInterface | setProperty

Blocks
Component | Reference Component | Variant Component

More About
• “Compose Architecture Visually” on page 1-2
• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-10

 Build an Architecture Model from Command Line

1-35

• “Assign Interfaces to Ports” on page 3-7
• “Decompose and Reuse Components” on page 1-16

1 Architecture Model Editing

1-36

Create Architecture Views Interactively
The structural hierarchy of a system typically differs from the hierarchy of the system's functional
requirements. With architecture views, you can view a system based on different hierarchies.

A view shows a customizable subset of elements in a model. Views can be filtered based on
stereotypes or names of components, ports, and interfaces, along with the name, type, or units of an
interface element. Construct views by pulling in elements manually. Views create a simplified way to
work with complex architectures by focusing on certain parts of the architecture design.

You can use different types of views to represent the system:

• Operational views demonstrate how a system will be used and should be well integrated with
requirements analysis.

• Functional views focus on what the system must do to operate.
• Physical views show how the system is constructed and configured.

A viewpoint represents a stakeholder perspective that specifies the contents of the view.

For example, you can author a system using the requirements. This view allows you to better
understand what components you need to satisfy your requirements while not necessarily focusing on
the structure.

You can create an architecture view interactively with automation or construct them manually. This
example uses the architecture model for a keyless entry system, scKeylessEntrySystem, to create
views.

Create Filtered Views with Grouping Criteria
1 In the MATLAB Command Window, enter scKeylessEntrySystem. The architecture model

opens in the Simulink Editor.
2 In the Views section, click Architecture Views to open the Architecture Views Gallery.

 Create Architecture Views Interactively

1-37

3 Click New View to create a new view.
4 In View Properties on the right pane, in the Name box, enter a name for this view, for example,

Software Component Review. Choose a Color and enter a Description, if necessary.

1 Architecture Model Editing

1-38

5 In the View Configurations pane, select Filter to add a new form-based criterion to the filter.
6 Select Add Clause. From the Select drop-down, select Components. From the Where drop-

down, select Stereotype. In the text box, select AutoProfile.SoftwareComponent from the
drop-down.

7 Click Apply Query. An architecture view is created using the query from the Filter box. The
view is filtered to select all components with the SoftwareComponent stereotype applied to
them.

 Create Architecture Views Interactively

1-39

8 In the View Configurations pane, select Grouping.
9 To choose a property enumeration for grouping, click Add Group By.
10 Select AutoProfile.BaseComponent.ReviewStatus from the drop-down.
11 Click Add Group By again.
12 Select AutoProfile.SoftwareComponent.ImplementationLanguage from the drop-down.
13 Click Apply Query.

1 Architecture Model Editing

1-40

Interactively Add and Remove Elements from Views
1 To add more components to the view, drag and drop components from Model Components.

Drag and drop the Lighting System component to the Software Component Review view.
Alternatively, use the Add button on the toolstrip. You can also use the keyboard shortcut Ctrl+I
to add component instantiations to your view when they are selected.

Note Interactively adding and removing elements from your view with an associated query is not
supported. You will receive a warning message: Remove associated query? Press OK to proceed.

 Create Architecture Views Interactively

1-41

You can use the keyboard shortcut Delete to delete components from the view.
2 Observe that Lighting System has been added to the view.

3 From the Requirement menu, select Requirements Manager. The Requirement Links tab
appears at the bottom of the Software Component Review view.

1 Architecture Model Editing

1-42

4 Select the Lighting Controller component and see the linked requirement Automatically
turn off headlights.

5 Select the requirement Automatically turn off headlights to open the Requirement
Editor to view or modify requirement links.

Add or Remove Requirements Links from Views
1 In the Architecture Views Gallery, from the Requirement menu, select Open Requirements

Editor if the Requirement Editor is not open already.
2 Select the Should unlock door requirement.
3 Return to the Architecture Views Gallery. In the Software Component Review view select the

Lighting Controller component.
4 From the Requirement menu, select Link to selected requirement. The new requirement

Should unlock door is added.

 Create Architecture Views Interactively

1-43

5 To remove a requirement link, select and confirm deletion.

See Also
createView | deleteView | getView | openViews | systemcomposer.view.ElementGroup |
systemcomposer.view.View

More About
• “Create Architectural Views Programmatically” on page 1-45
• “Display Component Hierarchy Using Hierarchy Views” on page 1-58

1 Architecture Model Editing

1-44

Create Architectural Views Programmatically
You can create an architecture view programmatically. This topic presents two examples of creating
architecture views programmatically and shows you how to use queries to find elements in a System
Composer model.

A query is a specification that describes certain constraints or criteria to be satisfied by model
elements. Use queries to search elements with constraint criteria and to filter views.

Architecture Views in System Composer with Keyless Entry System
This example shows how to use a keyless entry system to programmatically create architecture views
using API.

1. Import the package with the queries.

import systemcomposer.query.*;

2. Open the Simulink® project file for the Keyless Entry System.

scKeylessEntrySystem

3. Load the example model into System Composer™.

zcModel = systemcomposer.loadModel('KeylessEntryArchitecture');

Example 1: Hardware Component Review Status View

Create a filtered view that selects all of the hardware components in the architecture model and
groups them using the ReviewStatus property.

1. Construct the query to select all of the hardware components.

hwCompQuery = HasStereotype(IsStereotypeDerivedFrom('AutoProfile.HardwareComponent'))

hwCompQuery =
 HasStereotype with properties:

 AllowedParentConstraints: {1x3 cell}
 SubConstraint: [1x1 systemcomposer.query.IsStereotypeDerivedFrom]
 SkipValidation: 0

2. Use the query to create a view.

zcModel.createView('Hardware Component Review Status',...
 'Select',hwCompQuery,... % Query to use for the selection
 'GroupBy',{'AutoProfile.BaseComponent.ReviewStatus'},... % Stereotype property to qualify by
 'IncludeReferenceModels',true,... % Include components in referenced models
 'Color','purple');

3. Open the Architecture Views Gallery.

zcModel.openViews

 Create Architectural Views Programmatically

1-45

Example 2: FOB Locator System Supplier View

This example shows how to create a freeform view that manually pulls the components from the FOB
Locator System and then groups them using existing and new view components for the suppliers. In
this example, you will use element groups, groupings of components in a view, to programmatically
populate a view.

1. Create a view architecture.

fobSupplierView = zcModel.createView('FOB Locator System Supplier Breakdown',...
 'Color','lightblue');

2. Add a subgroup called 'Supplier D'. Add the FOB Locator Module to the view element
subgroup.

supplierD = fobSupplierView.Root.createSubGroup('Supplier D');
supplierD.addElement('KeylessEntryArchitecture/FOB Locator System/FOB Locator Module');

3. Create a new subgroup for 'Supplier A'.

supplierA = fobSupplierView.Root.createSubGroup('Supplier A');

4. Add each of the FOB Receivers to view element subgroup.

FOBLocatorSystem = zcModel.lookup('Path','KeylessEntryArchitecture/FOB Locator System');

% Find all the components which contain the name "Receiver"
receiverCompPaths = zcModel.find(...
 contains(systemcomposer.query.Property('Name'),'Receiver'),...
 FOBLocatorSystem.Architecture);

supplierA.addElement(receiverCompPaths)

1 Architecture Model Editing

1-46

Find Elements in a Model Using Queries
This example shows how to find components in a System Composer model using queries.

Open the model.

import systemcomposer.query.*;

scKeylessEntrySystem
zcModel = systemcomposer.loadModel('KeylessEntryArchitecture');

Find all the software components in the system.

con1 = HasStereotype(Property("Name") == "SoftwareComponent");
[compPaths, compObjs] = zcModel.find(con1)

compPaths = 5x1 cell
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}

compObjs=1×5 object
 1x5 Component array with properties:

 IsAdapterComponent
 Architecture
 ReferenceName
 Name
 Parent

 Create Architectural Views Programmatically

1-47

 Ports
 OwnedPorts
 OwnedArchitecture
 Position
 Model
 SimulinkHandle
 SimulinkModelHandle
 UUID
 ExternalUID

% Include reference models in the search
softwareComps = zcModel.find(con1, 'IncludeReferenceModels', true)

softwareComps = 9x1 cell
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor/Detect Door Lock Status'}

Find all the base components in the system.

con2 = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.BaseComponent"));
baseComps = zcModel.find(con2)

baseComps = 18x1 cell
 {'KeylessEntryArchitecture/Engine Control System/Start//Stop Button' }
 {'KeylessEntryArchitecture/Sound System/Dashboard Speaker' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Sensor' }
 {'KeylessEntryArchitecture/FOB Locator System/Center Receiver' }
 {'KeylessEntryArchitecture/FOB Locator System/Front Receiver' }
 {'KeylessEntryArchitecture/FOB Locator System/Rear Receiver' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }

Find all components using the interface KeyFOBPosition.

con3 = HasPort(HasInterface(Property("Name") == "KeyFOBPosition"));
con3_a = HasPort(Property("InterfaceName") == "KeyFOBPosition");
keyFOBPosComps = zcModel.find(con3)

keyFOBPosComps = 10x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System' }

1 Architecture Model Editing

1-48

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Engine Control System' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/FOB Locator System' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Sound System' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

Find all components whose WCET is less than or equal to 5ms.

con4 = PropertyValue("AutoProfile.SoftwareComponent.WCET") <= 5;
zcModel.find(con4)

ans = 1x1 cell array
 {'KeylessEntryArchitecture/Sound System/Sound Controller'}

% You can specify units and it will do the conversions for you
con5 = PropertyValue("AutoProfile.SoftwareComponent.WCET") <= Value(5, 'ms');
query1Comps = zcModel.find(con5)

query1Comps = 3x1 cell
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module'}
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }

Find all components whose WCET is greater than 1 ms OR has a cost greater than 10 USD.

con6 = PropertyValue("AutoProfile.SoftwareComponent.WCET") > Value(1, 'ms') | PropertyValue("AutoProfile.Base.Cost") > Value(10, 'USD');
query2Comps = zcModel.find(con6)

query2Comps = 2x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}

Close the model.

zcModel.close;

See Also
createView | deleteView | find | getView | lookup | openViews |
systemcomposer.query.Constraint | systemcomposer.view.ElementGroup |
systemcomposer.view.View

More About
• “Create Architecture Views Interactively” on page 1-37
• “Display Component Hierarchy Using Hierarchy Views” on page 1-58

 Create Architectural Views Programmatically

1-49

Import and Export Architecture Models
To build a System Composer model, you can import information about components, ports, and
connections in a predefined format using MATLAB table objects. You can extend these tables and add
information like applied stereotypes, property values, linked model references, variant components,
interfaces, and requirement links.

Similarly, you can export information about components, hierarchy of components, ports on
components, connections between components, linked model references, variants, stereotypes on
elements, interfaces, and requirement links.

Define a Basic Architecture
The minimum required structure for a System Composer model consists of these sets of information:

• Components table
• Ports table
• Connections table

To import additional elements, you need to add columns to the tables and add specific values for
these elements.

Components Table

The information about components is passed as values in a MATLAB table against predefined column
names, where:

• Name is the component name.
• ID is a user-defined ID used to map child components and add ports to components.
• ParentID is the parent component ID.

For example, Component_1_1 and Component_1_2 are children of Component_1.

Name ID ParentID
root 0
Component_1 1 0
Component_1_1 2 1
Component_1_2 3 1
Component_2 4 0

Ports Table

The information about ports is passed as values in a MATLAB table against predefined column names,
where:

• Name is the port name.
• Direction is an input or output port direction.
• ID is a user-defined port ID used to map ports to port connections.

1 Architecture Model Editing

1-50

• CompID is the ID of the component to which the port is added. It is the component passed in the
components table.

Name Direction ID CompID
Port1 Output 1 1
Port2 Input 2 4
Port1_1 Output 3 2
Port1_2 Input 4 3

Connections Table

The information about connections is passed as values in a MATLAB table against predefined column
names, where:

• Name is the connection name.
• ID is connection ID used to check that the connections are properly created during the import

process.
• SourcePortID is the ID of the source port.
• DestPortID is the ID of the destination port.

Name ID SourcePortID DestPortID
Conn1 1 1 2
Conn2 2 3 4

Import a Basic Architecture
Import the basic architecture from the tables created above into System Composer from the MATLAB
Command Window.

systemcomposer.importModel('importedModel',components,ports,connections)

The basic architecture model opens.

Tip The tables do not include information about the model's visual layout. You can arrange the
components manually or use Architecture > Arrange > Arrange Automatically.

Extend the Basic Architecture Import
You can import other model elements into the basic structure tables.

Import Interfaces and Map Ports to Interfaces

To define the interfaces, add interface names in the ports table to associate ports to corresponding
portInterfaces table. Create a table similar to components, ports, and connections.
Information like interface name, associated element name along with data type, dimensions, units,
complexity, minimum, and maximum values are passed to the importModel function in a table
format shown below.

 Import and Export Architecture Models

1-51

Name ID ParentI
D

DataTyp
e

Dimension
s

Units Comple
xity

Minimu
m

Maximu
m

interface
1

1

elem1 2 interfa
ce1

interfa
ce3

1 "" real "[]" "[]"

interface
2

3 1 1 "" real "[]" "[]"

elem2 4 interfa
ce1

1 1 "" real "[]" "[]"

Note Anonymous interfaces cannot be nested. You cannot define an anonymous interface as the data
type of elements.

To map the added interface to ports, add column InterfaceID in the ports table to specify the
interface to be linked. For example, interface1 is mapped to Port1 as shown below.

Name Direction ID CompID InterfaceID
Port1 Output 1 1 interface1
Port2 Input 2 4 interface2
Port1_1 Output 3 2 ""
Port1_2 Input 4 3 interface1

Import Variant Components, Stateflow Behaviors, or Reference Components

You can add variant components just like any other component in the components table, except you
specify the name of the active variant. Add choices as child components to the variant components.
Specify the variant choices as string values in the VariantControl column. You can enter
expressions in the VariantCondition column.

Add a variant component VarComp using component type Variant with choices Choice1 and
Choice2. Set Choice2 as the active choice.

To add a referenced Simulink model, change the component type to Behavior and specify the
reference model name simulink_model.

To add a Stateflow Chart behavior on a component, change the component type to
StateflowBehavior. If System Composer does not detect a license or installation of Stateflow, a
Composition component is imported instead.

Name ID ParentID Reference
ModelNam
e

Componen
tType

ActiveChoi
ce

VariantCon
trol

VariantCon
dition

root 0
Component
1

C1 0 simulink_
model

Behavior

1 Architecture Model Editing

1-52

Name ID ParentID Reference
ModelNam
e

Componen
tType

ActiveChoi
ce

VariantCon
trol

VariantCon
dition

VarComp V2 0 Variant Choice2
Choice1 C6 V2 petrol
Choice2 C7 V2 diesel
Component
3

C3 0 Stateflow
Behavior

Component
1_1

C4 C1

Component
1_2

C5 C1

Pass the modified components table along with the ports and connections tables to the
importModel function.

Apply Stereotypes and Set Property Values on Imported Model

To apply stereotypes on components, ports, and connections, add a StereotypeNames column to the
components table. To set the properties for the stereotypes, add a column with a name defined using
the profile name, stereotype name, and property name. For example, name the column
UAVComponent_OnboardElement_Mass for a UAVComponent profile, a OnBoardElement
stereotype, and a Mass property.

You set the property values in the format value{units}. Units and values are populated from the
default values defined in the loaded profile file.

Name ID ParentID StereotypeNam
es

UAVComponent
_OnboardEleme
nt_Mass

UAVCompon
ent_Onboard
Element_Po
wer

root 0
Component_1 1 0 UAVComponent.O

nboardElement
0.93{kg} 0.65{mW}

Component_1_1 2 1
Component_1_2 3 1 UAVComponent.O

nboardElement
0.93{kg} ""

Component_2 4 0

Assign Requirement Links on Imported Model

To assign requirement links to the model, add a requirementLinks table with these required
columns:

• Label is the name of the requirement.
• ID is the ID of the requirement.
• SourceID is the architecture element to which the requirement is attached.

 Import and Export Architecture Models

1-53

• DestinationType is how requirements are saved.
• DestinationID is where the requirement is located.
• Type is the requirement type.

Label ID SourceID DestinationT
ype

DestinationID Type

rset#1 1 components
:1

linktype_r
mi_slreq

C:\Temp
\rset.slreqx#1

Implement

rset#2 2 components
:0

linktype_r
mi_slreq

C:\Temp
\rset.slreqx#2

Implement

rset#3 3 ports:1 linktype_r
mi_slreq

C:\Temp
\rset.slreqx#3

Implement

rset#4 4 ports:3 linktype_r
mi_slreq

C:\Temp
\rset.slreqx#4

Implement

A Simulink Requirements™ license is required to import requirement links into a System Composer
architecture model.

Specify Elements on Architecture Port

In the connections table, you can specify different kinds of signal interface elements as source
elements or destination elements. Connections can be formed from a root architecture port to a
component port, from a component port to a root architecture port, or between two root architecture
ports of the same architecture.

The nested interface element mobile.elem is the source element for the connection between an
architecture port and a component port. The nested element mobile.alt is the destination element
for the connection between an architecture port and a component port. The interface element
mobile and the nested element mobile.alt are source elements for the connection between two
architecture ports of the same architecture.

1 Architecture Model Editing

1-54

Name ID SourcePortI
D

DestPortID SourceElement DestinationElem
ent

RootToComp1 1 5 4 mobile.elem
RootToComp2 2 5 1 mobile.alt
Comp1ToRoot 3 2 6 interface
Comp2ToRoot 4 3 6 mobile.alt
RootToRoot 5 5 6 mobile,mobile.

alt

Export an Architecture
To export a model, pass the model name and as an argument to the exportModel function. The
function returns a structure containing four tables components, ports, connections,
portInterfaces, and requirementLinks.

>> exportedSet = systemcomposer.exportModel(modelName)

You can export the set to MATLAB tables and then convert those tables to external file formats,
including Microsoft® Excel® or databases.

Update Reference Requirement Links from Imported File
After importing requirement links from a file, update links to reference requirements for the model to
make full use of the Simulink® Requirements™ functionality.

model = systemcomposer.openModel('reqImportExample');

Import Requirement Links from Word File

Open the Microsoft® Word file Functional_Requirements.docx with the requirements listed.
Highlight the requirement to link.

In the model, select the component to which to link the requirement. From the drop-down list, select
Requirements > Link Selection to Word.

 Import and Export Architecture Models

1-55

Export Model and Save to External Files

Export the model and save to an external file.

exportedSet = systemcomposer.exportModel('reqImportExample');
SaveToExcel('exportedModel',exportedSet);

1 Architecture Model Editing

1-56

Import Requirement Links from File and Import to Model

Use the external files to import requirement links into another model.

structModel = ImportModelFromExcel('exportedModel.xls','Components','Ports', ...
'Connections','PortInterfaces','RequirementLinks');
structModel.readTableFromExcel;

arch = systemcomposer.importModel('reqNewExample',structModel.Components, ...
structModel.Ports,structModel.Connections,structModel.Interfaces,structModel.RequirementLinks);

Update Links to Reference Requirements

To integrate the requirement links to the model, update references within the model.

close(model);
model2 = systemcomposer.openModel('reqNewExample');
systemcomposer.updateLinksToReferenceRequirements('reqNewExample','linktype_rmi_word','Functional_Requirements.docx');

See Also
exportModel | importModel | systemcomposer.io.ModelBuilder |
updateLinksToReferenceRequirements

More About
• “Import and Export Architectures” on page 6-39
• “Import System Composer Architecture Using Model Builder” on page 6-41

 Import and Export Architecture Models

1-57

Display Component Hierarchy Using Hierarchy Views
This example shows how to use hierarchy views to visualize component hierarchy as a tree diagram
with component stereotypes, stereotype properties, and the reference type a component instantiates.

Any component diagram view can be optionally represented as a hierarchy diagram. The hierarchy
view displays the components in tree form. The hierarchy view shows the same set of components
visible in the component diagram view, and the components displayed in the view are selected and
filtered in the same way.

This example uses an architecture model representing a keyless entry system for a vehicle to show
the hierarchy view. For more information about the keyless entry system, see “Modeling System
Architecture of Keyless Entry System” on page 6-31.

Switch Between Component Diagram and Hierarchy Diagram
1 To open the scKeylessEntrySystem project, use this command.

scKeylessEntrySystem
2 To open the architecture views, on the Modeling tab, select Architecture Views.
3 From the View Browser, select Software Component Review Status to display the component

diagram.

4 On the Views tab, select Hierarchy diagram.

5 Observe the Hierarchy View that corresponds to the same set of components.

1 Architecture Model Editing

1-58

The single root of the hierarchy diagrams show a single root, which is the view specification itself.
The root corresponds to the containing system box shown in the component diagram. The
connections in the hierarchy diagram originate from the child components and end with a diamond
symbol at the parent component.

See Also

More About
• “Create Architectural Views Programmatically” on page 1-45
• “Create Architecture Views Interactively” on page 1-37

 Display Component Hierarchy Using Hierarchy Views

1-59

Requirements

2

Manage Requirements
Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements.

To enhance traceability of requirements, link system, functional, customer, performance, or design
requirements to components and ports. Link requirements to each other to represent derived or
allocated requirements. Manage requirements from the requirements perspective on an architecture
model or through custom views. Assign test cases to requirements using the Test Manager for
verification and validation. For more information on using Simulink Test™ with Simulink
Requirements, see “Link to Test Cases from Requirements” (Simulink Requirements).

Manage requirements and architecture together in the Requirements perspective from Simulink
Requirements. Select Apps > Requirements Manager.

2 Requirements

2-2

When you click a component in the Requirements perspective, linked requirements are highlighted.
Conversely, when you click a requirement, the linked components are shown.

To directly create a link, drag a requirement onto a component or port.

 Manage Requirements

2-3

You can close the annotation that shows the link as necessary. This action does not delete the link.

You can exit the Requirements perspective by clicking the perspectives menu on the lower-right
corner of the architecture model and selecting Exit perspective.

2 Requirements

2-4

For more information on managing requirements from external documents, see “Manage Navigation
Backlinks in External Requirements Documents” (Simulink Requirements). To integrate the
requirement links to the model, see “Update Reference Requirement Links from Imported File” on
page 1-55.

See Also
updateLinksToReferenceRequirements

More About
• “Link and Trace Requirements” on page 6-25
• “Link Blocks and Requirements” (Simulink Requirements)
• “Import and Export Architectures” on page 6-39

 Manage Requirements

2-5

Interface Management

• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-7
• “Save, Link, and Delete Interfaces” on page 3-12
• “Reference Data Dictionaries” on page 3-14
• “Interface Adapter” on page 3-19

3

Define Interfaces
An interface defines the information that flows through a port. The same interface can be assigned to
multiple ports. An interface can include elements that describe the properties of an interface signal.
Interfaces represent the information that is shared through a connector and enters or exits a
component through a port. Use the Interface Editor to create and manage interfaces and interface
elements and store them in an interface data dictionary for reuse between models.

An interface element is a piece of data that is transmitted across an interface, such as a
communication message, a calculated or measured parameter, or other decomposition of that
interface. Examples of interface elements include:

• Pins or wires in a connector or harness.
• Messages transmitted across a bus.
• Data structures shared between components.

A system engineering solution includes a formal definition of the interfaces between components. A
connection shows that two components have an output-to-input relationship, and an interface defines
the type, dimensions, units, and structure of the data.

To show the Interface Editor, in the Design section, on the Modeling tab, select Interface Editor.
The Interface Editor will open along the bottom pane.

3 Interface Management

3-2

Note The System Composer Interface Editor is a web-based widget and might appear blank when
you first launch it. If this occurs, save the model and relaunch MATLAB with the command line option
-cefdisablegpu.

Create Interface

To add a new interface definition, click the icon. Name the interface.

 Define Interfaces

3-3

To add an element to the interface, click the icon. Interface and element names must be valid
variable names.

You can delete interfaces and elements in the Interface Editor using the button.

You can view and edit the properties of an element in the Property Inspector. Right-click the interface
element and select Inspect Properties. For interfaces, use the Property Inspector to apply
stereotypes.

For a comparative view, you can edit interface element properties from the Interface Editor columns.

3 Interface Management

3-4

Nested Interfaces
A nested interface contains another interface. Create a nested interface by assigning an interface as
the type of an interface element. For information about the corresponding bus objects, see “Nest Bus
Objects Using the Bus Editor”.

For example, let coordinates be an interface that consists of x, y, and z coordinates. GPSdata
includes location and a timestamp. If the location element is in the same format as the
coordinates interface, you can set its type to coordinates. Right-click location and select Set
'Type' > coordinates. The available interface options include all interfaces in the model, except the
parent of the element.

The nested interface displays the inherited interface elements.

 Define Interfaces

3-5

Show and Hide Columns in the Interface Editor

To change the number of columns that display in the Interface Editor, select the icon. Select or
deselect the desired columns to show or hide them.

See Also
addElement | addInterface | createAnonymousInterface | getElement | getInterface |
getInterfaceNames | removeElement | removeInterface

More About
• “Assign Interfaces to Ports” on page 3-7
• “Save, Link, and Delete Interfaces” on page 3-12
• “Reference Data Dictionaries” on page 3-14

3 Interface Management

3-6

Assign Interfaces to Ports
A port interface describes the data that can be passed between ports. Interface elements within the
interface describe characteristics of the data transmitted across the interface. Interface elements can
describe the composition of an interface, messages transmitted, or data structures shared between
components.

Use the Property Inspector to assign interfaces to one port at a time or the Interface Editor to assign
interfaces to multiple ports.

You can connect components through ports and specify the source element or the destination element
for the connection.

Incompatible interfaces on either end of a connection can be reconciled with an Adapter block using
the “Interface Adapter” on page 3-19.

Associate a Port with an Interface in the Property Inspector
To open the Property Inspector, locate it in the toolstrip in the Design section drop down. To show
the SensorData port properties, highlight the port in the model. Expand Interface, and select the
sensordata interface in the Name drop-down menu.

You can select an interface in the model data dictionary (see “Define Interfaces” on page 3-2), or
create an anonymous interface — an interface of unstructured data whose properties are valid for
that port only. An anonymous interface does not have a structure, but does have prescribed
properties such as Type and Dimensions. You can edit the properties of the anonymous interface in
the Property Inspector.

Select Multiple Ports and Assign an Interface
Multiple ports, whether they are connected or not, can use the same interface definition. When you
assign an interface to a port, it is automatically propagated to the connected ports, provided they do

 Assign Interfaces to Ports

3-7

not already have assignments. To simplify batch assignments, select multiple ports, right-click the
interface, and select Assign to Selected Port(s).

Highlight the ports that use an interface definition by clicking the interface name in the Interface
Editor.

3 Interface Management

3-8

 Assign Interfaces to Ports

3-9

Specify a Source Element or Destination Element for Ports on a
Connection
For connections between the root architecture and a component within the architecture model, you
can add a source element or destination element to the ports.

Create a component called Motor and connect it to the root architecture with ports named
MotionData and SpeedData. Define the interface Wheel with the interface elements
RotationSpeed and MaxSpeed. Assign the Wheel interface to the ports on the connection. Select
the MotionData port name on the component and a dot and a list of signal interface elements will
appear. Select the source element RotationSpeed from the list. Assign the MaxSpeed destination
element to the SpeedData port.

3 Interface Management

3-10

Reconcile Different Interfaces on Connected Ports using an Adapter
block
A source port and the destination port to which it connects may be defined by different interfaces.
Such a connection can represent an intermediate point in design, where components from different
sources come together. To connect components with different interfaces, use an Adapter block from
the component palette and the “Interface Adapter” on page 3-19.

Change the number of input ports on an Adapter block the same way you add and remove component
ports. For more information, see “Ports” on page 1-9.

See Also
Functions
connect | getDestinationElement | getSourceElement | setInterface

Blocks
Adapter | Component

More About
• “Define Interfaces” on page 3-2
• “Save, Link, and Delete Interfaces” on page 3-12
• “Reference Data Dictionaries” on page 3-14
• “Interface Adapter” on page 3-19

 Assign Interfaces to Ports

3-11

Save, Link, and Delete Interfaces
Engineering systems often share interface definitions across multiple components or subsystems.

Interfaces in System Composer can be stored either locally in a model or in a data dictionary,
depending on the maturity of your system.

An interface data dictionary is a consolidated list of all the interfaces in an architecture and where
they are used. Local interfaces on a System Composer model can be saved in an interface data
dictionary using the Interface Editor. Interface dictionaries can be reused between models that need
to use a given set of interfaces and interface elements. Data dictionaries are stored in
separate .sldd files.

By default, interfaces are stored within the architecture model and are not visible outside the model.
If you are in the initial stages of building a system model, store interfaces locally to limit the number
of files that need to be managed. However, if your model is mature to the point of leveraging
componentization workflows like reference architectures and behaviors, storing interfaces in a data
dictionary gives you the ability to share interface definitions across the model hierarchy.

Use the menu to save an interface to a new or existing data dictionary. To create a new data
dictionary, select Save to new dictionary. Provide a dictionary name.

You can also add the interface definitions in the model to an existing data dictionary by selecting
Link existing dictionary.

Use the button to import interface definitions from a Simulink bus object, either from a MAT-file or
the workspace.

Delete an interface from a dictionary using the button. If the interface is already being used by
ports in a currently open model, the software returns a warning message. The interface is then
removed from any ports in the open model that are associated with the interface. Note that if an
interface is deleted from a dictionary, upon opening another model that shares the dictionary, a
warning will be presented on startup if the deleted interface is used by ports in that model. The
Diagnostic Viewer offers an option to remove the deleted interface from all ports that are still using
it. You can also select ports individually and delete their missing interfaces.

3 Interface Management

3-12

Note that a System Composer model and a data dictionary are separate artifacts. Even when the data
dictionary is linked to the model, changes to the data dictionary (a .sldd file) must be saved
separately from changes to the model (a .slx file). To save changes to a linked data dictionary, use
the button and select Save dictionary. Once a data dictionary is saved, other models can use
its interface definitions by linking to the data dictionary, allowing multiple models to share the same
interface definitions.

See Also
createDictionary | linkDictionary | openDictionary | saveToDictionary |
unlinkDictionary

More About
• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-7
• “Reference Data Dictionaries” on page 3-14

 Save, Link, and Delete Interfaces

3-13

Reference Data Dictionaries

Add Referenced Data Dictionaries
Referenced dictionaries may be useful when multiple models need to share some, but not all,
interface definitions. and to allow communication between the models. A data dictionary can
reference one or more other data dictionaries. The interface definitions in the referenced dictionaries
are visible in the parent dictionary and can be used by a model that is linked to the parent dictionary.

To add a dictionary reference, open the Model Explorer by clicking , or by selecting Model
Explorer from the tab in the Design section of the Modeling tab.

On the right side of the Model Explorer window, click Add, then select the file name of the data
dictionary to add as a referenced dictionary. To remove a dictionary reference, highlight the
referenced dictionary, then click Remove.

The Interface Editor shows all interfaces accessible to a model, grouped based on their data
dictionary files. In this example, myDictionary.sldd is the data dictionary linked to the model, and
otherDictionary.sldd is a referenced dictionary.

3 Interface Management

3-14

The model can use any of the interfaces listed. However, you cannot modify the contents of the
referenced dictionaries from the model.

Note that referenced dictionaries can reference other data dictionaries. A model that links to a
dictionary has access to all interface definitions in referenced dictionaries, including indirectly
referenced dictionaries.

Use Referenced Data Dictionaries for Projects with Multiple Models
A project may contain multiple models, and it may be useful for the models to share interface
definitions that are relevant to data flows and other communications between models. At the same
time, each model may have interface definitions that are relevant only to its internal operations. For
example, different components of a system may be represented by different models, with different
teams or different suppliers working on each model, with a system integrator working on the "top"
model that incorporates the various components. Referenced data dictionaries provide a way for
models to share some but not all interface definitions.

In such a multiple-team project, set up a "shared artifacts" data dictionary to store interface
definitions that will be shared by different teams, then set up a data dictionary for each model within
the project to store its own interface definitions. Each data dictionary can then add the shared data
dictionary as a referenced data dictionary. Alternatively, if a model does not need its own interface
definitions, that model can link directly to the shared data dictionary.

 Reference Data Dictionaries

3-15

The above diagram depicts a project with three models. The model mSystem.slx represents a
system integration model, and mSupplierA.slx and mSuppierB.slx represent supplier models.
The data dictionary dShared.sldd contains interface definitions shared by all the models. The
system integration model is linked to the data dictionary dSystem.sldd, and the Supplier A model is
linked to the data dictionary dSupplierA.sldd; each data dictionary contains interface definitions
relevant to the corresponding model's internal workflow. The data dictionaries dSystem.sldd and
dSupplierA.sldd both reference the shared dictionary dShared.sldd. The Supplier B model, by
contrast, is linked directly to the shared dictionary dShared.sldd. In this way, all three models have
access to the interface definitions in dShared.sldd.

The following diagrams show the system integration model mSystem, along with the Interface Editor.
Interface definitions contained in the referenced dictionary dShared are associated with the ports
used to communicate between the models mSupplierA and mSupplierB and the rest of the system
integration model.

3 Interface Management

3-16

The following diagrams show the supplier model mSupplierA, along with the Interface Editor.
Interface definitions contained in the referenced dictionary dShared are associated with the ports
used to communicate externally, while interface definitions in the private dictionary dSupplierA are
associated with ports whose use is internal to the mSupplierA model.

 Reference Data Dictionaries

3-17

See Also
addReference | removeReference

More About
• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-7
• “Save, Link, and Delete Interfaces” on page 3-12

3 Interface Management

3-18

Interface Adapter
An Adapter block helps connect two components with incompatible port interfaces by mapping
between the two interfaces. Launch the Interface Adapter by double-clicking an Adapter block on
the connection between the ports.

Use the Interface Adapter to map interface elements between two ports. You can also use the
Interface Adapter to apply an interface conversion to use unit delays to break algebraic loops, or to
insert a rate transition for different sample time rates.

Map Similar Interfaces
When two connected components with Simulink behaviors have the same number of signals with
different names, use an Adapter block and the Interface Adapter to define the port connections.

1 Add an Adapter block to your model on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 In the Select input box, select an interface element. In the Select output box, select an

interface element.
4 Click the Map button.

Use Unit Delay to Break Algebraic Loop
When connecting two components with port connections in both directions, an algebraic loop can
occur. To break the algebraic loop, use an Adapter block to insert a unit delay between the
components.

1 Add an Adapter block to your model on the connection between the two components.

 Interface Adapter

3-19

2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select UnitDelay.

Use Rate Transition Between Simulink Behaviors
When connecting two Reference Components, the Simulink models they reference can have different
sample time rates. For compatibility, use an Adapter block to insert a rate transition between the
components.

1 Add an Adapter block to your model on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select RateTransition.

See Also
Blocks
Adapter

More About
• “Define Interfaces” on page 3-2
• “Save Simulink.Bus Objects”
• “Assign Interfaces to Ports” on page 3-7

3 Interface Management

3-20

Define Architectural Properties

• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-10

4

Define Profiles and Stereotypes
To verify structural and functional requirements, you must capture nonfunctional properties on
elements in an architecture model. To capture these properties, use stereotyping.

A stereotype is a custom extension of the modeling language. Stereotypes provide a mechanism to
extend the architecture language elements by adding domain-specific metadata. Apply stereotypes to
the root level architecture, component architecture, connectors, ports, and interfaces of a model.
Stereotypes provide model elements within the architecture a common set of property fields, such as
mass, cost, and power.

A profile is a package of stereotypes to create a self-consistent domain of model element types. Apply
profiles to a model through the Profile Editor. You can store stereotypes for a project in one profile or
in several. Profiles are stored in .xml files when they are saved.

A property is a field in a stereotype. For each model element the stereotype is applied to, specific
property values are specified. Use properties to store quantitative characteristics, such as weight or
speed, that are associated with a model element. Properties can also be descriptive or represent a
status.

For example, if there is a limit on the total power consumption of a system, the model must be able to
capture the power rating of each electrical component. To define component-specific property values
requires extending built-in model element types with properties corresponding to requirements. In
this case, an electrical component type as an extension of components is a stereotype. By extending
the definition of regular components, you introduce a custom modeling language and framework that
includes specific concepts and terminologies important for the architecture model. Capturing the
individual properties also sets the scene for early parametric analyses and to define custom views.

You can define default stereotypes in a profile to be added to any new element in a model with that
applied profile. Stereotype-based styling enhances the appearance of the model based upon specific
features each element represents.

System Composer provides these architectural model elements to describe an architecture model:

• Component
• Port
• Connector
• Interface

You can view and edit the properties of each element in the architecture model using the Property
Inspector. Open the Property Inspector using View > Property Inspector.

You can author profiles using the Profile Editor. Profiles are saved separately from the architecture
model as .xml files and are available to all architecture models.

When you create a profile, you define:

• Stereotypes — Customize built-in model element types.
• Property sets — Add analysis properties to an architecture model element.
• Data types, units, dimensions, etc. — Define property values.

You can define stereotypes to extend built-in elements and capture additional data about an element.
Element stereotypes define the class of the elements to which they apply. For example, a

4 Define Architectural Properties

4-2

MechanicalComponent stereotype with properties such as Weight and Volume applies only to
components, and not to ports, connectors, or interfaces.

A stereotype does not have to define a class. For example, a ProjectItem stereotype can add
generic properties such as CatalogNumber or UnitCost, a BorrowedItem stereotype can add
properties such as BorrowedSource and ReturnDeadline. A model element can have multiple
stereotypes.

Stereotypes can extend other stereotypes to include their properties through an inherited
mechanism. For example, a UserInterface stereotype can be an extension of a
SoftwareComponent stereotype, and add a property called ScreenResolution.

You can collect these stereotypes in profiles to import into the model.

Create a Profile and Add Stereotypes
Create a profile to define a set of component, port, and connection types to be used in an architecture
model. For example, a profile for an electromechanical system, such as a robot, could consist of these
types:

• Component types:

• Electrical component
• Mechanical component
• Software component

• Connection types:

• Analog signal connection
• Data connection

• Port types

• Data port

Define a profile using the Profile Editor. On the Modeling tab, in the Profiles section, select Import,

then from the drop-down, select Edit . Click New Profile. Select new profile to start editing.

Name the profile and provide a description. Add stereotypes by clicking New Stereotype. You can

delete stereotypes and profiles by clicking the button in their respective menus.

Save the profile. The file name is the same as the profile name.

Add Properties with Stereotypes
Select a stereotype in a profile to define it:

• Name — The name of the stereotype, for example, ElectricalComponent.
• Applies to — The model element type to which the stereotype applies. This field can be an <all>,

component, port, connector, or interface. You can apply this stereotype only to a model element of
this type.

 Define Profiles and Stereotypes

4-3

• Icon — Icon to be shown on the model element with color, if applicable.
• Connector Style — Line style of the connector to be shown on the model with color, if applicable.
• Base stereotype — Other stereotype on which this stereotype is based. This can be empty.
• Abstract stereotype — A stereotype that is not intended to be applied directly to a model

element. You can use abstract stereotypes only as the base stereotype for other stereotypes.

Add properties to a stereotype using the button. Define these fields for each property:

• Property name — Valid variable name
• Type — Numeric, string, or enumeration data type
• Name — Name of the enumerated type, if applicable
• Unit — Value units as a string
• Default — Default value

Add, delete, and reorder properties using the property toolstrip:

You can create a stereotype that applies to all model element types by setting the Applies to field to
<all>. With these stereotypes, you can add properties to elements regardless of whether they are
components, ports, connectors, or interfaces.

4 Define Architectural Properties

4-4

Default Stereotypes
Each profile can have a set of default stereotypes. Use default stereotypes when each new element of
a certain type must assume the same stereotype. System Composer applies a default stereotype to
the root architecture when you import the profile. You can set this default in the Profile Editor using
the Stereotype applied to root on import field.

 Define Profiles and Stereotypes

4-5

This default stereotype is for the top-level architecture. If a model imports multiple profiles, the
default component stereotype for all profiles apply to the architecture.

Each component stereotype can also have defaults for the components, ports, and connections added
to its architecture. For example, if you want all new connections in an electrical component to be
analog connections, set AnalogConnection as a default stereotype for the ElectricalComponent
stereotype.

4 Define Architectural Properties

4-6

After you import the profile into a model, all new connections assume the AnalogConnection
stereotype.

Stereotype-Based Styling
Profiles and stereotypes are used to apply custom metadata on the architecture model elements.
Element styling is an additional visual cue that indicates applied stereotypes.

You can use provided icons for the component stereotypes or use you own custom icon images.
Custom icons support .png, .jpeg, or .svg image files of size 16-by-16 pixels. The custom icons are
displayed as badges on the components for which the stereotypes are applied.

 Define Profiles and Stereotypes

4-7

You can associate a color with component stereotypes. Element styling is an additional visual cue that
indicates applied stereotypes.

Use a preconfigured set of color options for component stereotypes to style the architecture
component headers. See “Use Stereotypes and Profiles” on page 4-10 to learn how to use
stereotypes in your model.

Similarly, you can style architecture connectors using the stereotype settings. You can style
connectors by using connector, port, or port interface stereotypes. Customize styling provides various
color and line style choices. Connector styles are also reflected in architecture and spotlight views.

4 Define Architectural Properties

4-8

Connector styling is sourced from the highest-priority stereotype that defines style information.
Connector stereotypes have the highest priority, followed by port stereotypes and then interface
stereotypes.

When two connectors with different styling merge, if the styling is incompatible, the resulting
connector is displayed in black.

See Also
editor | systemcomposer.profile.Profile | systemcomposer.profile.Property |
systemcomposer.profile.Stereotype

More About
• “Use Stereotypes and Profiles” on page 4-10

 Define Profiles and Stereotypes

4-9

Use Stereotypes and Profiles
Use profiles to add properties to components, ports, and connectors. Import an existing profile, apply
stereotypes, and add property values. To create a profile, see “Define Profiles and Stereotypes” on
page 4-2.

Import Profiles
The Profile Editor is independent from the model that opens it, so you must explicitly import a new
profile into a model. The profile must first be saved with an .xml extension. On the Modeling tab, in

the Profiles section, select Import, then from the drop-down, select Import . Select the profile
to import. An architecture model can use multiple profiles at once.

Alternatively, open the Profile Editor. On the Modeling tab, in the Profiles section, select Import,

then from the drop-down, select Edit . You can import a profile into any open dictionaries or
models.

4 Define Architectural Properties

4-10

Note For a System Composer component that is linked to a Simulink behavior model, the profile
must be imported into the Simulink model before applying a stereotype from it to the component.
Since the Property Inspector on the Simulink side does not display stereotypes, this workflow is not
finalized.

To manage profiles after they have been imported, in the Profiles section, select Import, then from

the drop-down, select Manage .

 Use Stereotypes and Profiles

4-11

Apply a Stereotype
Once the profile is available in the model, open the Property Inspector. On the Modeling tab, in the
Design section, select Property Inspector. Select a model element.

4 Define Architectural Properties

4-12

In the Stereotype field, use the drop-down to select the stereotype. Only the stereotypes that apply
to the current element type (for example, a port) are available for selection. If no stereotype exists,
you can use the <new / edit> option to open the Profile Editor and create one.

 Use Stereotypes and Profiles

4-13

When you apply a stereotype to an element, a new set of properties appears in the Property Inspector
under the name of the stereotype. To edit the properties, expand this set.

You can set multiple stereotypes for each element.

You can also apply component, port, connector, and interface stereotypes to all applicable elements at
the same architecture level. On the Modeling tab, in the Profiles section, select Apply Stereotypes.

4 Define Architectural Properties

4-14

In the Apply Stereotypes dialog box, from Apply stereotype(s) to, select Top-level
architecture, All elements, Components, Ports, Connectors, or Interfaces.

Note The Interfaces option is only available if interfaces are defined in the Interface Editor. For
more information, see “Define Interfaces” on page 3-2.

You can also apply stereotypes by selecting a single model element. From the Scope list, select
Selection, This layer, or Entire model.

 Use Stereotypes and Profiles

4-15

You can also apply stereotypes to interfaces. When interfaces are locally defined and you select one
or more interfaces in the Interface Editor, the options for Scope are Selection and Local
interfaces.

4 Define Architectural Properties

4-16

When interfaces are stored and shared across a data dictionary and you select one or more interfaces
in the Interface Editor, the options for Scope are Selection and either dictionary.sldd or the
name of the dictionary currently in use.

 Use Stereotypes and Profiles

4-17

Note For the stereotypes to display for interfaces in a dictionary, in the Apply Stereotypes dialog box,
the profile must be imported into the dictionary.

You can also create a new component with an applied stereotype using the quick-insert menu. Select
the stereotype as a fully qualified name. A component with that stereotype is created.

4 Define Architectural Properties

4-18

Remove a Stereotype
If a stereotype is no longer required for an element, remove it using the Property Inspector. Click
Select next to the stereotype and choose Remove.

Extend a Stereotype
You can extend a stereotype by creating a new stereotype based on the existing one, allowing you to
control properties in a structural manner. For example, all components in a project may have a part
number, but only electrical components have a power rating, and only electronic components — a
subset of electrical components — have manufacturer information. You can use an abstract
stereotype to serve solely as a base for other stereotypes and not as a stereotype for any architecture
model elements.

 Use Stereotypes and Profiles

4-19

For example, create a new stereotype called ElectronicComponent in the Profile Editor. Select its
base stereotype as FunctionalArchitecture.ElectricalComponent. Define properties you are
adding to those of the base stereotype. Check Show inherited properties at the bottom of the
property list to show the properties of the base stereotype. You can edit only the properties of the
selected stereotype, not the base stereotype.

When you apply the new stereotype, it carries its defined properties in addition to those of its base
stereotype.

4 Define Architectural Properties

4-20

See Also
editor | systemcomposer.profile.Profile | systemcomposer.profile.Property |
systemcomposer.profile.Stereotype

More About
• “Define Profiles and Stereotypes” on page 4-2
• “Analyze Architecture” on page 6-10

 Use Stereotypes and Profiles

4-21

Use Simulink Models with System
Composer

• “Implement Component Behavior in Simulink” on page 5-2
• “Add Stateflow Chart Behavior to Architecture Component” on page 5-7
• “Extract Architecture from Simulink Model” on page 5-12
• “Define Sequence Diagrams” on page 5-16
• “Use Sequence Diagrams in the Views Gallery” on page 5-27

5

Implement Component Behavior in Simulink
System design and architecture definition can involve a behavior definition for some components,
such as the algorithm for a data processing component. Components in System Composer
architecture models can define behavior using Simulink models by linking components to Simulink
models.

Create a Simulink Behavior Model
When a component does not require further decomposition from an architecture standpoint, you can
design and define its behavior in Simulink. When linked to a Simulink behavior, the component
becomes a Reference Component. A reference component represents a logical hierarchy of other
compositions. You can reuse compositions in the model using reference components.

1 Right-click the component and select Create Simulink Behavior, or, on the toolstrip under
Component, click Create Simulink Behavior.

2 Provide a model name. The default name is the name of the component.

5 Use Simulink Models with System Composer

5-2

• A new Simulink model with the provided name is created. The root level ports of the Simulink
model reflect the ports of the component.

• The component in the architecture model is linked to the Simulink model. The Simulink icon on
the component indicates this is a Simulink link.

 Implement Component Behavior in Simulink

5-3

You can continue with providing specific dynamics and algorithms in the referenced Simulink model.
Adding root-level ports in the Simulink model creates additional ports on the System Composer
Reference Component block.

You can access and edit a referenced Simulink model by double-clicking the component in the
architecture model. When you save the architecture model, all unsaved Simulink behavior models it
references must also be saved, and all linked components updated.

Link to an Existing Simulink Behavior Model
You can link to an existing Simulink behavior model from a System Composer component, provided
that the component is not already linked to a reference architecture. Right-click the component and
select Link to Model. Type in or browse for the name of a Simulink model.

Any subcomponents and ports that are present in the components get deleted when the component
links to a Simulink model, with a prompt to continue and lose subcomponents and ports when linking.

Note The software does not support linking a System Composer component to a Simulink model with
root-level enable or trigger ports.

You can link protected Simulink models (.slxp) to create component behaviors. You can also convert
an already linked Simulink behavior model to a protected model, and the change is reflected after
refreshing the model.

5 Use Simulink Models with System Composer

5-4

Create a Simulink Behavior from Template for a Component
To create user-defined templates for Simulink models, see “Create Template from Model”.

After creating and saving a user-defined template, you can link the template to a Simulink behavior.
Right-click the component and select Create Simulink Behavior, or, on the toolstrip under
Component, click Create Simulink Behavior.

On the Create Simulink behavior dialog, choose the template and enter a new data dictionary
name if local interfaces are defined. Click OK. The component exhibits a Simulink behavior according
to the template with shared interfaces, if present. Blocks and lines in the template are excluded, and
only configuration settings are preserved. Configuration settings include annotations and styling.

Note Architecture templates can be used with Save As Architecture Model.

 Implement Component Behavior in Simulink

5-5

See Also
Functions
createSimulinkBehavior | linkToModel | saveAsModel

Blocks
Reference Component

More About
• “Decompose and Reuse Components” on page 1-16
• “Add Stateflow Chart Behavior to Architecture Component” on page 5-7
• “Extract Architecture from Simulink Model” on page 5-12
• “Simulating Mobile Robot with System Composer Workflow” on page 6-46

5 Use Simulink Models with System Composer

5-6

Add Stateflow Chart Behavior to Architecture Component
A state chart diagram demonstrates the state-dependent behavior of a component throughout its
state lifecycle and the events that can trigger a transition between states. Add Stateflow Chart
behavior to describe a System Composer architectural component using state machines.

State charts consist of a finite set of states with transitions between them to capture the modes of
operation for the component. Charts allow design for different modes, internal states, and event-
based logic of a system. You can also use charts as stubs to mock a complex component
implementation during top-down integration testing. A Stateflow license is required to use this
functionality. For more information, see “Stateflow”.

Add State Chart Behavior to a Component
A System Composer component with stereotypes, interfaces, requirement links, and ports, is
preserved when you add Stateflow Chart behavior.

1 This example uses the architecture model for an unmanned aerial vehicle (UAV) to add state
chart behavior to a component. Enter the following command:

scExampleSmallUAV
2 Double-click the Airframe component. Select the LandingGear component on the System

Composer composition editor.
3 Select the Brake port. Open the Interface Editor from the toolstrip Design > Interface Editor.

Right-click the interface operatorCmds and select Assign to Selected Port(s).
4 Right-click the LandingGear component and select Create Stateflow Chart Behavior.

Alternatively, on the toolstrip, under Component, click Create Stateflow Chart Behavior.

 Add Stateflow Chart Behavior to Architecture Component

5-7

5 Double-click LandingGear, which has the Stateflow icon. In the Modeling menu, select Design
Data, then click Symbols Pane to view the Stateflow symbols. The input port Brake appears as
input data in the Symbols pane.

Note Some Stateflow objects remain local to Stateflow Charts. Input and output event ports are
not supported in System Composer. Only local events are supported.

5 Use Simulink Models with System Composer

5-8

Since Stateflow ports show up as input and output data objects, they must follow Stateflow
naming conventions. Ports are automatically renamed to follow Stateflow naming conventions.
For more information, see “Guidelines for Naming Stateflow Objects” (Stateflow).

6 Select the Brake input and view the interface in the Property Inspector. The interface can be
accessed like a Simulink bus signal. For information on how to use bus signals in Stateflow, see
“Index and Assign Values to Stateflow Structures” (Stateflow).

7 You can populate the Stateflow canvas to represent the internal states of the LandingGear.

 Add Stateflow Chart Behavior to Architecture Component

5-9

A Stateflow Chart behavior added to a component is part of the same System Composer architecture
model that contains the component.

Inline Stateflow Chart Behavior
You can inline a component with a Stateflow Chart behavior to delete the contents inside the
Stateflow Chart while preserving interfaces.

1 Right-click on the LandingGear component and select Inline Behavior.

2 To confirm the operation to delete all the content inside the Stateflow Chart behavior, click OK.
3 The Stateflow Chart behavior on the component is removed and the component is inlined with

interfaces.

5 Use Simulink Models with System Composer

5-10

See Also
createStateflowChartBehavior | inlineComponent

More About
• “Decompose and Reuse Components” on page 1-16
• “Implement Component Behavior in Simulink” on page 5-2
• “Extract Architecture from Simulink Model” on page 5-12
• “Define Sequence Diagrams” on page 5-16
• “Use Sequence Diagrams in the Views Gallery” on page 5-27

 Add Stateflow Chart Behavior to Architecture Component

5-11

Extract Architecture from Simulink Model
You can use System Composer architecture editing and analysis capabilities on Simulink models. To
do so, extract the architecture from a Simulink model. Model and Subsystem blocks, as well as all
ports in a Simulink model represent architectural constructs, while all other blocks represent some
kind of dynamic or algorithmic behavior. In the architecture model that you obtain from a Simulink
model, you can choose to represent architectural constructs or link to behavior models.

1 Open an example model.

openExample('ReferenceFilesForCollaborationExample')
2 On the Simulation tab, click the Save arrow. From the Export Model To list, select

Architecture Model.

3 Provide a name and path for the architecture model.

5 Use Simulink Models with System Composer

5-12

4 Click Export. A System Composer Editor window opens with an architecture model
corresponding to the Simulink model.

 Extract Architecture from Simulink Model

5-13

Each subsystem in the Simulink model corresponds to a component in the architecture model so that
the hierarchy in the architecture model reflects the hierarchy of the behavior model.

The requirements for subsystems and Model blocks in the Simulink model are preserved in the
architecture model.

Any Model block in the Simulink model that references another model corresponds to a component
that links to that same referenced model.

5 Use Simulink Models with System Composer

5-14

Buses at subsystem and Model block ports, as well as their dictionary links are preserved in the
architecture model.

You can use the exported model to add architecture-related information such as interface definitions,
nonfunctional properties for model elements and analyze the design.

See Also
extractArchitectureFromSimulink

More About
• “Extract the Architecture of a Simulink Model Using System Composer” on page 6-33
• “Implement Component Behavior in Simulink” on page 5-2
• “Add Stateflow Chart Behavior to Architecture Component” on page 5-7
• “Decompose and Reuse Components” on page 1-16

 Extract Architecture from Simulink Model

5-15

Define Sequence Diagrams
A sequence diagram is a behavior diagram that represents the interaction between structural
elements of an architecture as a sequence of message exchanges. You can use sequence diagrams to
describe how the parts of a static system interact.

You can use sequence diagrams in System Composer by accessing the Architecture Views Gallery.
Sequence diagrams are integrated with architecture models. For more information on how to create
and use sequence diagrams with an architectural model, see “Use Sequence Diagrams in the Views
Gallery” on page 5-27.

In this example, you will learn about the basic terminology and functions of a sequence diagram in
two stages.

• Add lifelines and messages with trigger conditions and constraint conditions to represent
interactions.

• Include fragments and operands with constraint conditions to further specify the behavior of the
interaction.

Add Lifelines and Messages
1 Create a new sequence diagram by navigating to Views > Architecture Views. The

Architecture Views Gallery opens. Select New Sequence Diagram under the button to
create a new sequence diagram.

2 A new sequence diagram called SequenceDiagram is created in the View Browser and the

Sequence Diagram tab becomes active. Select Component > Add Lifeline to add an
element lifeline. A new lifeline with a vertical dashed line is created without a name.

5 Use Simulink Models with System Composer

5-16

3 Name the lifeline Element 1 and create a second lifeline, Element 2.

4 Select the vertical dotted line for the Element 1 lifeline. Click and drag to the Element 2
lifeline. Specify the To and From message ends as In and Out, respectively.

 Define Sequence Diagrams

5-17

5 Click on the message to see where to place the message condition. Enter a trigger condition with
one of the following trigger events:

• crossing
• rising
• falling

For example, the message trigger condition could be specified as follows:

falling(In.elem1 + 5)

The signal name In.elem1 must be a signal element in a signal interface associated with the
port. For more information on interface management, see “Define Interfaces” on page 3-2.

The trigger condition must be in this form:

triggerEvent(signalName (+|-) positiveReal)

A message trigger condition activates on a zero-crossing event when the value of the port signal
is zero, starting from the specified value.

6 Add a constraint condition using a MATLAB boolean expression in square brackets. Constraint
conditions consist of a boolean expression acting on a signal name.

[In.elem2 >= 1]

5 Use Simulink Models with System Composer

5-18

The constraint condition is an additional check after the trigger condition.

Note Only destination elements are supported for trigger conditions and constraints. In this
example, Out is a source element and cannot be included.

Add Fragments and Operands
You can use composite fragments to enable control structures in sequence diagrams. Operands within
composite fragments can be further specified with operand conditions composed of MATLAB boolean
expressions between signal names.

To access a menu of fragments:

1 Click and drag to select the message.

 Define Sequence Diagrams

5-19

2 Pause on the ellipsis (...) that appears to access the action bar.

3 A list of composite fragments appears:

• Alt Fragment
• Opt Fragment
• Loop Fragment

5 Use Simulink Models with System Composer

5-20

• Seq Fragment
• Strict Fragment
• Par Fragment

Select Alt Fragment.

4 The Alt Fragment fragment is added to the sequence diagram message.

 Define Sequence Diagrams

5-21

5 Select the composite fragment to enter an operand condition. Choose a fully qualified signal
name and use a constraint condition relation.

Element 2/In.elem2 > 0

The constraint determines when the alternative operand is accepted.

5 Use Simulink Models with System Composer

5-22

The message inside the operand can be executed only if the constraint condition is true.
6 Highlight the first operand under the Alt Fragment composite fragment and select Fragment

> Add Operand > Insert After. A second operand is added.

 Define Sequence Diagrams

5-23

7 Add a constraint condition relation to the second operand.

Element 2/In.elem1 ~= 5

5 Use Simulink Models with System Composer

5-24

The second operand in an Alt Fragment fragment represents an elseif condition for which
the message will not be executed.

View the Define Sequence Diagrams Example
You can view the final product of the workflow example for this topic.

Open the System Composer model that contains the sequence diagram.

model = systemcomposer.openModel('ArchModelDefine');

Open the Architecture Views Gallery to view the sequence diagram.

openViews(model);

 Define Sequence Diagrams

5-25

See Also

More About
• “Use Sequence Diagrams in the Views Gallery” on page 5-27
• “Implement Component Behavior in Simulink” on page 5-2
• “Add Stateflow Chart Behavior to Architecture Component” on page 5-7
• “Define Interfaces” on page 3-2

5 Use Simulink Models with System Composer

5-26

Use Sequence Diagrams in the Views Gallery
You can author sequence diagrams to describe expected system behavior as a sequence of
interactions between components of a System Composer architecture model. New lifelines or
messages authored on the sequence diagram are automatically reflected in the model. Incorporate
model elements in a sequence diagram associated with the model the elements are from. You can
create multiple sequence diagrams to represent different operational scenarios of the system.

Sequence diagrams are integrated into the Architecture Views Gallery in System Composer. Lifelines
in a sequence diagram correspond to components in an architecture model. Messages in a sequence
diagram correspond to the connectors between components in an architecture model.

In this example, you will learn about using sequence diagrams in System Composer with emphasis on
how to:

• Create a sequence diagram and co-create components and connections.
• Add child lifelines in a sequence diagram.
• Keep the architecture model and the sequence diagram in sync.

Create a Sequence Diagram
Create a basic architecture model in System Composer.

In the menu, navigate to Views > Architecture Views to open up the Architecture Views Gallery for

your model. Select New Sequence Diagram under the button to create a new sequence
diagram.

 Use Sequence Diagrams in the Views Gallery

5-27

Select Add Lifeline from the menu. A box with a vertical dotted line appears on the canvas. This
is the new lifeline. Click the down arrow on the lifeline to view available options. Select the
component named Sensor to be represented by the lifeline.

Create Sequence Diagram Gates
Select the gutter region, click, and drag to the lifeline. Name the To port Source and the From port
Grid. See that a gate called Grid has been created with a message ending on the Sensor lifeline at
the port Source.

Return to the architecture diagram. Observe that Grid is a root architecture port connected to the
Sensor component.

5 Use Simulink Models with System Composer

5-28

Add Child Lifelines in a Sequence Diagram
You can add child lifelines to a sequence diagram to represent model hierarchy and describe the
interactions between them.

Select Component > Add Lifeline from the toolstrip menu. From the list that appears, select
the PowerSource component.

Child components called Battery and Charger are located inside the PowerSource component.

 Use Sequence Diagrams in the Views Gallery

5-29

Select the PowerSource lifeline. Click the down arrow below Component > Add Lifeline, then
select Add Child Lifeline Select Battery. The Battery child lifeline is now situated below
PowerSource in the hierarchy.

Co-Create Components
The co-creation workflow between the sequence diagram and the architecture model keeps the model
synchronized as you make changes to the sequence diagram. Adding both lifelines and messages in a
sequence diagram results in updates to the architecture model. This example shows component co-
creation.

5 Use Simulink Models with System Composer

5-30

Select Component > Add Lifeline from the menu. Another box with a vertical dotted line appears
on the canvas. In the lifeline box, enter the name of a new component named Machine.

Observe that the Machine component is co-created in the architecture diagram.

Synchronize Between the Sequence Diagram and the Model
Remove the Machine component from the architecture diagram. Return to the sequence diagram and
select Synchronize > Check Consistency. See that the Machine lifeline is highlighted, as it has no
corresponding architectural component.

 Use Sequence Diagrams in the Views Gallery

5-31

To restore the Machine component, either remove the Machine lifeline or select the undo button in
the architecture model. Click Check Consistency again.

Create Messages in the Sequence Diagram
You can create a message from an existing connection. Draw a line from the Sensor lifeline to the
PowerSource lifeline. Start to type InBus, which will automatically fill in as you type. When it does,
select InBus.

The message is created in the sequence diagram.

5 Use Simulink Models with System Composer

5-32

For more information on using message conditions, fragments, operands, and operand conditions in a
sequence diagram, see “Define Sequence Diagrams” on page 5-16.

Click and Drag from the Model Browser
The Views Gallery model browser located on the bottom left of the canvas, is called Model
Components. Click and drag the Charger child component into the sequence diagram.

The sequence diagram is updated with a new component.

 Use Sequence Diagrams in the Views Gallery

5-33

Use Sequence Diagrams in the Views Gallery Example
You can view the final product of the workflow example for this topic.

Open the System Composer model that contains the sequence diagram.

model = systemcomposer.openModel('ArchModel');

Open the Architecture Views Gallery to view the sequence diagram.

openViews(model);

Create a Sequence Diagram from a View
In the MATLAB Command Window, enter scKeylessEntrySystem. The architecture model opens in
the Simulink Editor.

In the menu, navigate to Views > Architecture Views to open the Architecture Views Gallery for the
model.

Right-click the Sound System Supplier Breakdown view and select New Sequence Diagram.

5 Use Simulink Models with System Composer

5-34

A new sequence diagram of lifelines is created with all the components from the view.

See Also

More About
• “Define Sequence Diagrams” on page 5-16
• “Implement Component Behavior in Simulink” on page 5-2
• “Add Stateflow Chart Behavior to Architecture Component” on page 5-7

 Use Sequence Diagrams in the Views Gallery

5-35

Analyze Architecture Model

• “Create and Manage Allocations” on page 6-2
• “Allocate Architectures in a Tire Pressure Monitoring System” on page 6-5
• “Analyze Architecture” on page 6-10
• “Battery Sizing and Automotive Electrical System Analysis” on page 6-17
• “Modeling System Architecture of Small UAV” on page 6-19
• “Link and Trace Requirements” on page 6-25
• “Modeling System Architecture of Keyless Entry System” on page 6-31
• “Extract the Architecture of a Simulink Model Using System Composer” on page 6-33
• “Import and Export Architectures” on page 6-39
• “Import System Composer Architecture Using Model Builder” on page 6-41
• “Simulating Mobile Robot with System Composer Workflow” on page 6-46

6

Create and Manage Allocations
This example shows how to create and manage System Composer™ allocations. Use allocations to
establish a directed relationship from architecture elements (components, ports, and connectors) in
one model to architecture elements in another model. One common use case for allocations is to
establish relationships from software components to hardware components to indicate a deployment
strategy.

This example uses the Tire Pressure Monitoring System (TPMS) project. To open the project, use this
command:

scExampleTirePressureMonitorSystem

Create a New Allocation Set

You can create an allocation set using the Allocation Editor. An allocation set is a collection of
allocation relationships between two models: a source model, and a target model. The allocation set
is stored as an .mldatx file.

In this example, TPMS_FunctionalArchitecture.slx is the source model and the
TPMS_LogicalArchitecture.slx is the target model.

To create an allocation set for these models, use this command.

allocSet = systemcomposer.allocation.createAllocationSet(...
 'Functional2Logical', ...% Name of the allocation set
 'TPMS_FunctionalArchitecture', ... % Source model
 'TPMS_LogicalArchitecture' ... % Target model
);

To see the allocation set, open the Allocation Editor by using the following command.

systemcomposer.allocation.editor;

The Allocation Editor has three parts: the toolstrip, the browser pane, and the allocation matrix.

• Use the toolstrip to create and manage allocation sets. For instance, you can use the New
Allocation Set button to create a new allocation set between two models.

• Use the Allocation Set Browser pane to browse and open existing allocation sets.
• Use the allocation matrix to specify allocations between the source model elements in the first

column and target model elements in the first row. You can create allocations programmatically or
by double-clicking a cell in the matrix.

6 Analyze Architecture Model

6-2

Create Allocations between Two Models

This example shows how to programmatically create allocations between two models in the TPMS
project.

Get handles to the reporting functions in the functional architecture model.

functionalArch = systemcomposer.loadModel('TPMS_FunctionalArchitecture');
reportLevels = functionalArch.lookup('Path', 'TPMS_FunctionalArchitecture/Report Tire Pressure Levels');
reportLow = functionalArch.lookup('Path', 'TPMS_FunctionalArchitecture/Report Low Tire Pressure');

Get the handle to the TPMS reporting system component in the logical architecture model.

logicalArch = systemcomposer.loadModel('TPMS_LogicalArchitecture');
reportingSystem = logicalArch.lookup('Path', 'TPMS_LogicalArchitecture/TPMS Reporting System');

Create the allocations in the default scenario that is created.\

defaultScenario = allocSet.getScenario('Scenario 1');
defaultScenario.allocate(reportLevels, reportingSystem);
defaultScenario.allocate(reportLow, reportingSystem);

Save the allocation set.

allocSet.save;

Optionally, you can delete the allocation between reporting low tire pressure and the reporting
system.

defaultScenario.deallocate(reportLow, reportingSystem);

See Also
allocate | editor | getScenario | systemcomposer.allocation.AllocationScenario |
systemcomposer.allocation.AllocationSet

 Create and Manage Allocations

6-3

More About
• “Allocate Architectures in a Tire Pressure Monitoring System” on page 6-5
• “Simulating Mobile Robot with System Composer Workflow” on page 6-46

6 Analyze Architecture Model

6-4

Allocate Architectures in a Tire Pressure Monitoring System
This example shows how to use allocations to analyze a tire pressure monitoring system.

Overview

In systems engineering, it is common to describe a system at different levels of abstraction. For
example, you can describe a system in terms of its high-level functions. These functions may not have
any behavior associated with them but most likely trace back to some operating requirements the
system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this
example, an automobile tire pressure monitoring system is described in three different architectures:

1 Functional Architecture — Describes the system in terms of its high-level functions. The
connections show dependencies between functions.

2 Logical Architecture — Describes the system in terms of its logical components and how data is
exchanged between them. Additionally, this architecture specifies behaviors for model simulation.

3 Platform Architecture — Describes the physical hardware needed for the system at a high level.

The allocation process is defined as linking these three architectures that fully describe the system.
The linking captures the information about each architectural layer and makes it accessible to the
others.

Use this command to open the project.

 scExampleTirePressureMonitorSystem

Open the FunctionalAllocation.mldatx file which displays allocations from
TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture. The elements of
TPMS_FunctionalArchitecture are displayed in the first column and the elements of
TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations
between model elements.

 Allocate Architectures in a Tire Pressure Monitoring System

6-5

This figure displays allocations in the architectural component level. The arrows display allocated
components in the model. You can observe allocations for each element in the model hierarchy.

The rest of the example shows how you can use this allocation information to further analyze the
model.

Functional to Logical Allocation and Coverage Analysis

This section shows how to perform coverage analysis to verify that all functions have been allocated.
This process requires using the allocation information specified between the functional and logical
architectures.

To start the analysis, load the allocation set.

 allocSet = systemcomposer.allocation.load('FunctionalAllocation');
 scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.

 import systemcomposer.query.*;
 [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
 unAllocatedFunctions = [];
 for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
 end
 end

 if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
 else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
 end

6 Analyze Architecture Model

6-6

All functions are allocated

The result displays All functions are allocated to verify that all functions in the system are
allocated.

Analyze Suppliers Providing Functions

This example shows how to identify which functions will be provided by which suppliers using the
specified allocations. The supplier information is stored in the logical model, since these are the
components that the suppliers will be delivering to the system integrator.

 suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
 functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
 numFunNames = length(allFunctions);
 numSuppliers = length(suppliers);
 allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
 allocTable.Properties.VariableNames = suppliers;
 allocTable.Properties.RowNames = functionNames;
 for i = 1:numFunNames
 elem = scenario.getAllocatedTo(allFunctions(i));
 for j = 1:numel(elem)
 elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
 allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
 end

 end

The table shows which suppliers are responsible for the corresponding functions.

 allocTable

allocTable=8×4 table
 Supplier A Supplier B Supplier C Supplier D
 __________ __________ __________ __________

 Report Low Tire Pressure 1 0 0 0
 Measure temprature of tire 0 0 0 1
 Calculate Tire Pressure 0 1 0 0
 Measure rotations 0 1 0 0
 Calculate if pressure is low 1 0 0 0
 Report Tire Pressure Levels 1 0 0 0
 Measure pressure on tire 0 0 1 0
 Measure Tire Pressure 0 0 0 0

Analyze Software Deployment Strategies

You can determine if the Engine Control Unit (ECU) has enough capacity to house all the software
components. The software components are allocated to the cores themselves, but the ECU is the
component that has the budget property.

Get the platform architecture.

 platformArch = systemcomposer.loadModel('PlatformArchitecture');

Load the allocation.

 softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');

 Allocate Architectures in a Tire Pressure Monitoring System

6-7

 frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');
 rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');

 scenario1 = softwareDeployment.getScenario('Scenario 1');
 scenario2 = softwareDeployment.getScenario('Scenario 2');
 frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
 rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");

 frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
 frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
 rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
 rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;

 frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
 frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;
 rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
 rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

Build a table to showcase the results.

 softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
 frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
 [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
 rearECU_availMemory; rearECU_isOverBudget2], ...
 'VariableNames',{'Scenario 1','Scenario 2'},...
 'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
 'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})

softwareDeploymentTable=6×2 table
 Scenario 1 Scenario 2
 __________ __________

 Front ECUMemory Used (MB) 110 90
 Front ECU Memory (MB) 100 100
 Front ECU Overloaded 1 0
 Rear ECU Memory Used (MB) 0 20
 Rear ECU Memory (MB) 100 100
 Rear ECU Overloaded 0 0

 function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)

For each of the components in the ECU, accumulate the binary size required for each of the allocated
software components.

 coreNames = {'Core1','Core2','Core3','Core4'};
 memoryUsed = 0;
 for i = 1:numel(coreNames)
 core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
 allocatedSWComps = scenario.getAllocatedFrom(core);
 for j = 1:numel(allocatedSWComps)
 binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
 memoryUsed = memoryUsed + binarySize;
 end
 end

6 Analyze Architecture Model

6-8

 end

See Also
getAllocatedFrom | getAllocatedTo | getScenario | load

More About
• “Create and Manage Allocations” on page 6-2

 Allocate Architectures in a Tire Pressure Monitoring System

6-9

Analyze Architecture

Analysis is a method for quantitatively evaluating an architecture for certain characteristics. Static
analysis analyzes the structure of the system. Static analysis uses an analysis function and parametric
values of properties captured in the system model. Use analysis to calculate overall reliability, mass
roll-up, performance, or thermal characteristics of a system, or to perform a SWaP analysis.

Write static analyses based on element properties to perform data-driven trade studies and verify
system requirements. Consider an electromechanical system where there is a trade-off between cost
and weight, and lighter components tend to cost more. The decision process involves analyzing the
overall cost and weight of the system based on the properties of its elements, and iterating on the
properties to arrive at a solution that is acceptable both from the cost and weight perspective.

The analysis workflow consists of these steps:

1 Define a profile containing a set of stereotypes that describe some analyzable properties (for
example, cost and weight).

2 Apply the profile to an architecture model and add stereotypes from that profile to elements of
the model (components, ports, or connectors).

3 Specify values for the properties on those elements.
4 Create an instance of the architecture model, which is a tree of elements, corresponding to the

model hierarchy with all shared architectures expanded and a variant configuration applied.
5 Write an analysis function to compute values necessary for the study. This is a static constraint

solver for parametrics and values of related properties captured in the system model.
6 Run the analysis function.

Set Properties for Analysis
This example shows how to enable analysis by adding stereotypes to model elements and setting
property values. The model provides the basis to analyze the trade-off between total cost and weight
of the components in a simple architecture model of a robot system.

Load the Model

Open the systemWithProps model.

systemWithProps

6 Analyze Architecture Model

6-10

Import a Profile

Enable analysis of properties by first importing a profile. In the Profiles section of the toolstrip, click
Manage > Import and browse to the profile.

Apply Stereotypes to Model Elements

Apply stereotypes to all model elements that are part of the analysis. Use the menu items that apply
stereotypes to all elements of a certain type. Select Apply Stereotypes > Apply to and then
Components > This layer. Make sure you apply the stereotype to the top-level component, if a
cumulative value is to be computed.

Set Property Values

Set property values for each model element.

1 Select the model element.
2 In the Property Inspector, expand the stereotype name and type values for properties.

 Analyze Architecture

6-11

Create a Model Instance for Analysis
Create an instance of the architecture model that you can use for analysis. An instance is an
occurrence of an architecture model at a given point of time. You can update an instance with
changes to a model, but the instance will not update with changes in active variants or model
references. You can use an instance, saved in an .MAT file, of a System Composer architecture model
for analysis.

In the Views section, select Analysis Model > Analysis Model. In this dialog box, specify all the
parameters required to create and view an analysis model.

6 Analyze Architecture Model

6-12

The stereotypes tree lists the stereotypes of all profiles that have been loaded in the current session
and allows you to select those whose properties should be available in the instance model. You can
browse for an analysis function, create a new one, or skip analysis at this point. If the analysis
function requires inputs other than elements in the model (such as an exchange rate to compute cost)
enter it in Function arguments. Select a mode for iterating through model elements, for example,
Bottom-up to move from the leaves of the tree to the root.

Note Strict Mode ensures instances only get properties if the instance's specification has the
stereotype applied.

To view the instance, click Instantiate.

 Analyze Architecture

6-13

The Analysis Viewer shows all components in the first column. The other columns are properties for
all stereotypes chosen for this instance. If a property is not part of a stereotype applied to an element,
that field is greyed out. You can use the Filter button to hide properties for certain stereotypes. When
you select an element, Instance Properties shows its stereotypes and property values. You can save
an instance in a MAT-file, and open it again in the Analysis Viewer.

If you make changes in the model while an instance is open, you can synchronize the instance with
the model. Update pushes the changes from the instance to the model. Refresh updates the instance
from the model. Unsynchronized changes are shown in a different color. Selecting a single element
enables the option to Update Element.

Write Analysis Function
Write a function to analyze the architecture model using instance API. Analysis functions are MATLAB
functions that compute values necessary to evaluate the architecture using properties of each
element in the model instance.

You can add an analysis function as you set up the analysis instance. After you select the stereotypes

of interest, create a template function by clicking next to the Analysis function field. The
generated M-file includes the code to obtain all property values from all stereotypes that are subject
to analysis. The analysis function operates on a single element — aggregate values are generated by
iterating this function over all elements in the model when you run the analysis from Analysis Viewer.
function systemWithProps_1(instance,varargin)

if instance.isComponent()
 if instance.hasValue('SystemProfile.PhysicalElement.unitCost')
 sysComponent_unitPrice = instance.getValue('SystemProfile.PhysicalElement.unitCost');
 end
 for child = instance.Components
 comp_price = child.getValue('SystemProfile.PhysicalElement.unitCost');
 sysComponent_unitPrice = sysComponent_unitPrice + comp_price;
 end

6 Analyze Architecture Model

6-14

 instance.setValue('SystemProfile.PhysicalElement.unitCost',sysComponent_unitPrice);
end

In the generated file, instance is the instance of the element on which the analysis function runs
currently. You can perform these operations for analysis:

• Access a property of the instance:
instance.getValue('<profile>.<stereotype>.<property>')

• Set a property of an instance:
instance.setValue('<profile>.<stereotype>.<property>',value)

• Access the subcomponents of a component: instance.Components
• Access the connectors in component: instance.Connectors

The getValue function generates an error if the property does not exist. You can use hasValue to
query whether elements in the model have the properties before getting the value.

As an example, this code computes the weight of a component as a sum of the weights of its
subcomponents.
if instance.isComponent()
 if instance.hasValue('SystemProfile.PhysicalElement.weight')
 weight = instance.getValue('SystemProfile.PhysicalElement.weight');
 end
 for child = instance.Components
 subcomp_weight = child.getValue('SystemProfile.PhysicalElement.weight');
 weight = weight + subcomp_weight;
 end
 instance.setValue('SystemProfile.PhysicalElement.weight',weight)
end

Once the analysis function is complete, add it to the analysis under the Analysis function box. An
analysis function can take additional input arguments, for example, a conversion constant if the
weights are in different units in different stereotypes. When this code runs for all components
recursively, starting from the deepest components in the hierarchy to the top level, the overall weight
of the system is assigned to the weight property of the top-level component.

Run Analysis Function
Run an analysis function using the Analysis Viewer.

1 Select or change the analysis function using the Analyze menu.
2 Select the iteration method.

• Pre-order — Start from the top level, move to a child component, process the
subcomponents of that component recursively before moving to a sibling component.

• Top-Down — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Post-order — Start from components with no subcomponents, process each sibling and
then move to parent.

• Bottom-up — Like post-order, but process all subcomponents at the same depth before
moving to their parents.

The iteration method depends on what kind of analysis is to be run. For example, for an analysis
where the component weight is the sum of the weights of its components, you must make sure
the subcomponent weights are computed first, so the iteration method must be bottom-up.

 Analyze Architecture

6-15

3 Click the Analyze button.

System Composer runs the analysis function over each model element and computes results. The
computed properties are shown in a different color in the Analysis Viewer.

See Also
deleteInstance | getValue | hasValue | instantiate | iterate | loadInstance | lookup |
refresh | save | setValue | systemcomposer.analysis.Instance | update

More About
• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-10
• “Simulating Mobile Robot with System Composer Workflow” on page 6-46

6 Analyze Architecture Model

6-16

Battery Sizing and Automotive Electrical System Analysis
Overview

This example shows how to model a typical automotive electrical system as an architectural model
and run primitive analysis. The elements in the model can be broadly grouped as either source or
load. Various properties of the sources and loads are set as part of the stereotype. The example uses
the iterate method of the specification API to iterate through each element of the model and run
analysis using the stereotype properties.

Structure of the Model

The generator charges the battery while the engine is running. The battery, along with the generator
supports the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load the Model and Run the Analysis

archModel = systemcomposer.openModel('scExampleAutomotiveElectricalSystemAnalysis');
% Instantiate battery sizing class used by the analysis function to store
% analysis results.
objcomputeBatterySizing = computeBatterySizing;
% Run the analysis using the iterator.
archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing);
% Display analysis results.
objcomputeBatterySizing.displayResults;

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.
Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specifed battery is sufficient to start the car at 0 F.

 Battery Sizing and Automotive Electrical System Analysis

6-17

Close the Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

See Also
deleteInstance | getValue | hasValue | instantiate | iterate | loadInstance | lookup |
save | setValue | systemcomposer.analysis.Instance | update

More About
• “Analyze Architecture” on page 6-10

6 Analyze Architecture Model

6-18

Modeling System Architecture of Small UAV
Overview

This example shows how to use System Composer to set up the architecture for a small unmanned
aerial vehicle, composed of six top-level components. Learn how to refine your architecture design by
authoring interfaces, inspect linked textual requirements, define profiles and stereotypes, and run a
static analysis on such an architecture model.

Open the project.

>> scExampleSmallUAV

Each top-level component is decomposed into its subcomponents. Navigate through the hierarchy to
view the composition for each component. The root component, scExampleSmallUAVModel, has
input and output ports that represent data exchange between the system and its environment.

Author Interfaces

Define interfaces for domain-specific data between connections. The information shared between two
ports defined by interface element property values further enhances the specification. In the
Modeling tab in the toolstrip, select Design, then click Interface Editor.

 Modeling System Architecture of Small UAV

6-19

Click the GS Commands port on the architecture model to highlight the
architecture_gsCommands interface and indicate the assignment of the interface.

Inspect Requirements

A Simulink Requirements license is required to inspect requirements in a System Composer
architecture model.

6 Analyze Architecture Model

6-20

Components in the architecture model link to system requirements defined in
smallUAVReqs.slreqx. Open the Requirements Perspective. In the bottom right corner of the
model pane, click Show Perspectives. Then, click Requirements.

Select components on the model to see the requirement they link to, or, conversely, select items in the
Requirements view to see which components implement them. Requirements can also be linked to
connectors or ports to allow traceability throughout your design artifacts. To edit the requirements in
smallUAVReqs.slreqx, select the Requirements Editor from the menu.

The Carrying Capacity requirement highlights the total mass able to be carried by the aircraft.
This requirement, along with the weight of the aircraft, is part of the mass rollup analysis performed
for early verification and validation.

Define Profiles and Stereotypes

To complete specifications and enable analysis later in the design process, stereotypes add custom
metadata to architecture model elements. This model has stereotypes for these elements:

• On-board element, applicable to components
• RF connector, applicable to ports
• RF wiring, applicable to connectors

 Modeling System Architecture of Small UAV

6-21

Stereotypes are defined in .xml files by using Profiles. The profile UAVComponent.xml is attached to
this model. Edit a profile by using the Profile Editor. On the Modeling tab, click Import > Edit.

The display appears below.

Analyze the Model

To run static analyses on your system, create an Analysis Model from your architecture model. An
Analysis Model is a tree of instances generated from the elements of the architecture model in which
all referenced models are flattened out, and all variants are resolved.

Click Analysis Model on the Views menu.

Run a mass rollup on this model. In the dialog, select the stereotypes that you want to include in your
analysis. Select the analysis function by browsing to utilities/massRollUp.m. Set the model
iteration mode to Bottom-up.

6 Analyze Architecture Model

6-22

Uncheck Strict Mode so that all components can have a Mass property instantiated to facilitate
calculation of total mass. Click Instantiate to generate an analysis.

 Modeling System Architecture of Small UAV

6-23

Once on the Analysis Viewer screen, click Analyze. The analysis function iterates through model
elements bottom up, assigning the Mass property of each component as a sum of the Mass properties
of its subcomponents. The overall weight of the system is assigned to the Mass property of the top
level component, scExampleSmallUAVModel.

See Also
addProperty | addStereotype | applyStereotype | createProfile | instantiate |
setInterface

More About
• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-7
• “Save, Link, and Delete Interfaces” on page 3-12
• “Link and Trace Requirements” on page 6-25
• “Manage Requirements” on page 2-2
• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-10
• “Analyze Architecture” on page 6-10

6 Analyze Architecture Model

6-24

Link and Trace Requirements
This example shows how to work with requirements in an architecture model.

Allocate functional requirements to components to establish traceability. By creating a link between a
component and the related requirement, you can track whether all requirements are represented in
the architecture. You can also keep requirements and design in sync, for example, if a requirement
changes or if the design warrants a revision of the requirements. You can link components to
requirements in Simulink® Requirements™, test cases in Simulink Test™, or selections in MATLAB®,
Microsoft® Excel®, or Microsoft Word.

Open the model exMobileRobot.

open_system('exMobileRobot')

 Link and Trace Requirements

6-25

Open the requirements MobileRobotRequirements.slreqx in the Requirements Editor. The
requirements file must be on the MATLAB path. Select the requirement to be linked.

6 Analyze Architecture Model

6-26

Select the component to be linked in the architecture model. Right-click and select Requirements >
Link to Selection in Requirements Editor.

 Link and Trace Requirements

6-27

When you first link a requirement in an architecture model, a link set file with extension .slmx is
created to store requirement links. The Requirements context menu displays the linked
requirements.

You can also create a link using the Requirements Editor. First, select the component in the
architecture model. Then, in the Requirements Editor, right-click the requirement and select Link
from <component_name> (Component).

6 Analyze Architecture Model

6-28

You can also create requirement links with blocks and subsystems in Simulink models. for more
information, see “Link Blocks and Requirements” (Simulink Requirements).

The badge on a component indicates that it is linked to a requirement. This badge also shows at
the lower-left corner of the architecture model.

To trace requirement links to a component, right-click and select Requirements > Open Outgoing
Links dialog. Here, you can create new requirements, delete existing ones, and change their order.

 Link and Trace Requirements

6-29

See Also
updateLinksToReferenceRequirements

More About
• “Manage Requirements” on page 2-2
• “Simulating Mobile Robot with System Composer Workflow” on page 6-46
• “View Simulink Requirements Links Associated with Model Elements”

6 Analyze Architecture Model

6-30

Modeling System Architecture of Keyless Entry System
Overview

This example shows how to set up the architecture for a keyless entry system for a vehicle. You also
learn how to create different architecture views for different stakeholder concerns.

Open the project.

scKeylessEntrySystem

Starting: Simulink

Opening the Architecture Views

You can create, view, and edit architecture views in the Architecture Views editor. To launch the
editor, select the Architecture Views button from the Modeling tab in the toolstrip. Select from one
of the existing views for the model. The model has these views:

• Key FOB Position Dataflow — An operational view of the components in the model that are making
use of the KeyFOBPosition interface.

• Door Lock System Supplier Breakdown — A functional view of the components in the door lock
system grouped by which supplier is providing the given components.

• Sound System Supplier Breakdown — A functional view of the components in the sound system
grouped by which supplier is providing the given components.

 Modeling System Architecture of Keyless Entry System

6-31

• Software Component Review Status — A physical view of the components in the model with the
SoftwareComponent stereotype applied grouped by the value of the ReviewStatus property.

See Also
createView | deleteView | getView | openViews | systemcomposer.view.ElementGroup |
systemcomposer.view.View

More About
• “Create Architecture Views Interactively” on page 1-37
• “Create Architectural Views Programmatically” on page 1-45
• “Display Component Hierarchy Using Hierarchy Views” on page 1-58

6 Analyze Architecture Model

6-32

Extract the Architecture of a Simulink Model Using System
Composer

Overview

This example shows how to export an existing Simulink® model to a System Composer™ architecture
model. The algorithmic sections of the original model are removed and structural information is
preserved during this process. Requirements links, if any, are also preserved.

Converting Simulink Model to System Composer Architecture

System Composer converts structural constructs in a Simulink model to equivalent architecture
model constructs:

• Subsystems to components
• Variant subsystems to variant components
• Bus objects to interfaces
• Referenced models to reference components

Open the Model

Open the Simulink model of a system.

slexPowerWindowStart

 Extract the Architecture of a Simulink Model Using System Composer

6-33

open_system('slexPowerWindowExample');

6 Analyze Architecture Model

6-34

Export the Model

Extract an architecture model from the original model.

systemcomposer.extractArchitectureFromSimulink('slexPowerWindowExample','PowerWindowArchModel');

 Extract the Architecture of a Simulink Model Using System Composer

6-35

Simulink.BlockDiagram.arrangeSystem('PowerWindowArchModel');
systemcomposer.openModel('PowerWindowArchModel');

6 Analyze Architecture Model

6-36

Simulate this Example

To simulate this example from start to finish, run in the Command Window:

scExamplePowerWindowBottomUp

See Also
extractArchitectureFromSimulink

 Extract the Architecture of a Simulink Model Using System Composer

6-37

More About
• “Extract Architecture from Simulink Model” on page 5-12

6 Analyze Architecture Model

6-38

Import and Export Architectures
In System Composer™, an architecture is fully defined by three sets of information:

• Component information
• Port information
• Connection information

You can import an architecture into System Composer when this information is defined in or
converted into MATLAB® tables.

In this example, the architecture information of a simple UAV system is defined in an Excel
spreadsheet and is used to create a System Composer architecture model. It also links elements to
the specified system level requirement. You can modify the files in this example to import
architectures defined in external tools, when the data includes the required information. The example
also shows how to export this architecture information from System Composer architecture model to
an Excel® spreadsheet.

Architecture Definition Data

You can characterize the architecture as a network of components and import by defining
components, ports, connections, interfaces and requirement links in MATLAB tables. The
components table must include name, unique ID, and parent component ID for each component. It
can also include other relevant information required to construct the architecture hierarchy for
referenced model, and stereotype qualifier names. The ports table must include port name,
direction, component, and port ID information. Port interface information may also be required to
assign ports to components. The connections table includes information to connect ports. At a
minimum, this table must include the connection ID, source port ID, and destination port ID.

The systemcomposer.importModel(importModelName) API :

• Reads stereotype names from the components table and loads the profiles
• Creates components and attaches ports
• Creates connections using the connection map
• Sets interfaces on ports
• Links elements to specified requirements
• Saves referenced models
• Saves the architecture model

% Instantiate adapter class to read from Excel.
modelName = 'simpleUAVArchitecture';
% importModelFromExcel function reads the Excel file and creates the MATLAB tables.
importAdapter = ImportModelFromExcel('SmallUAVModel.xls','Components', ...
 'Ports','Connections','PortInterfaces','RequirementLinks');
importAdapter.readTableFromExcel();

Import an Architecture
model = systemcomposer.importModel(modelName,importAdapter.Components, ...
 importAdapter.Ports,importAdapter.Connections,importAdapter.Interfaces, ...
 importAdapter.RequirementLinks);
% Auto-arrange blocks in the generated model
Simulink.BlockDiagram.arrangeSystem(modelName);

 Import and Export Architectures

6-39

Export an Architecture

You can export an architecture to MATLAB tables and then convert to an external file

exportedSet = systemcomposer.exportModel(modelName);
% The output of the function is a structure that contains the component table, port table,
% connection table, the interface table, and the requirement links table.
% Save the above structure to Excel file.
SaveToExcel('ExportedUAVModel',exportedSet);

Close Model

bdclose(modelName);

See Also
exportModel | importModel | updateLinksToReferenceRequirements

More About
• “Import and Export Architecture Models” on page 1-50

6 Analyze Architecture Model

6-40

Import System Composer Architecture Using Model Builder
This example shows how to import architecture specifications into System Composer™ using the
systemcomposer.io.modelBuilder utility class. These architecture specifications can be defined
in an external source such as an Excel® file.

In System Composer, an architecture is fully defined by four sets of information:

• Components and their position in the architecture hierarchy.
• Ports and their mapping to components.
• Connections between the components through ports. In this example, we also import interface

data definitions from an external source.
• Interfaces in architecture models and their mapping to ports.

This example uses the systemcomposer.io.modelBuilder class to pass all of the above
architecture information and import a System Composer model.

In this example, architecture information of a small UAV system is defined in an Excel spreadsheet
and is used to create a System Composer architecture model.

External Source Files

• Architecture.xlsx This Excel file contains hierarchical information of the architecture model.
This example maps the external source data to System Composer model elements. Below is the
mapping of information in column names to System Composer model elements.

 # Element : Name of the element. Either can be component or port name.
 # Parent : Name of the parent element.
 # Class : Can be either component or port(Input/Output direction of the port).
 # Domain : Mapped as component property. Property "Manufacturer" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Domain values in excel source file.
 # Kind : Mapped as component property. Property "ModelName" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Kind values in excel source file.
 # InterfaceName : If class is of port type. InterfaceName maps to name of the interface linked to port.
 # ConnectedTo : In case of port type, it specifies the connection to
 other port defined in format "ComponentName::PortName".

• DataDefinitions.xlsx This Excel file contains interface data definitions of the model. This
example assumes the below mapping between the data definitions in the source excel file and
interfaces hierarchy in System Composer.

 # Name : Name of the interface or element.
 # Parent : Name of the parent interface Name(Applicable only for elements) .
 # Datatype : Datatype of element. Can be another interface in format
 Bus: InterfaceName
 # Dimensions : Dimensions of the element.
 # Units : Unit property of the element.
 # Minimum : Minimum value of the element.
 # Maximum : Maximum value of the element.

Step 1. Instantiate the Model Builder Class

You can instantiate the model builder class with a profile name.

[stat,fa] = fileattrib(pwd);
if ~fa.UserWrite

 Import System Composer Architecture Using Model Builder

6-41

 disp('This script must be run in a writable directory');
 return;
end
% Name of the model to build.
modelName = 'scExampleModelBuider';
% Name of the profile.
profile = 'UAVComponent';
% Name of the source file to read architecture information.
architectureFileName = 'Architecture.xlsx';

% Instantiate the ModelBuilder.
builder = systemcomposer.io.ModelBuilder(profile);

Step 2. Build Interface Data Definitions

Reading the information in external source file DataDefinitions.xlsx, we build the interface data
model.

Create MATLAB® tables from source Excel file.

opts = detectImportOptions('DataDefinitions.xlsx');
opts.DataRange = 'A2'; % force readtable to start reading from the second row.
definitionContents = readtable('DataDefinitions.xlsx',opts);

% systemcomposer.io.IdService class generates unique ID for a
% given key
idService = systemcomposer.io.IdService();

for rowItr =1:numel(definitionContents(:,1))
 parentInterface = definitionContents.Parent{rowItr};
 if isempty(parentInterface)
 % In case of interfaces adding the interface name to model builder.
 interfaceName = definitionContents.Name{rowItr};
 % Get unique interface ID. getID(container,key) generates
 % or returns (if key is already present) same value for input key
 % within the container.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder utility function to add interface to data
 % dictionary.
 builder.addInterface(interfaceName,interfaceID);
 else
 % In case of element read element properties and add the element to
 % parent interface.
 elementName = definitionContents.Name{rowItr};
 interfaceID = idService.getID('interfaces',parentInterface);
 % ElementID is unique within a interface.
 % Appending 'E' at start of ID for uniformity. The generated ID for
 % input element is unique within parent interface name as container.
 elemID = idService.getID(parentInterface,elementName,'E');
 % Datatype, dimensions, units, minimum and maximum properties of
 % element.
 datatype = definitionContents.DataType{rowItr};
 dimensions = string(definitionContents.Dimensions(rowItr));
 units = definitionContents.Units(rowItr);
 % Make sure that input to builder utility function is always a
 % string.
 if ~ischar(units)
 units = '';

6 Analyze Architecture Model

6-42

 end
 minimum = definitionContents.Minimum{rowItr};
 maximum = definitionContents.Maximum{rowItr};
 % Builder function to add element with properties in interface.
 builder.addElementInInterface(elementName,elemID,interfaceID,datatype,dimensions,units,'real',maximum,minimum);
 end
end

Step 3. Build Architecture Specifications

Architecture specifications are created by MATLAB tables from the source Excel file.

excelContents = readtable(architectureFileName);
% Iterate over each row in table.
for rowItr =1:numel(excelContents(:,1))
% Read each row of the excel file and columns.
 class = excelContents.Class(rowItr);
 Parent = excelContents.Parent(rowItr);
 Name = excelContents.Element{rowItr};
 % Populating the contents of table using the builder.
 if strcmp(class,'component')
 ID = idService.getID('comp',Name);
 % Root ID is by default set as zero.
 if strcmp(Parent,'scExampleSmallUAV')
 parentID = "0";
 else
 parentID = idService.getID('comp',Parent);
 end
 % Builder utility function to add component.
 builder.addComponent(Name,ID,parentID);
 % Reading the property values
 kind = excelContents.Kind{rowItr};
 domain = excelContents.Domain{rowItr};
 % *Builder to set stereotype and property values.
 builder.setComponentProperty(ID,'StereotypeName','UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain);
 else
 % In this example, concatenation of port name and parent component name
 % is used as key to generate unique IDs for ports.
 portID = idService.getID('port',strcat(Name,Parent));
 % For ports on root architecture. compID is assumed as "0".
 if strcmp(Parent,'scExampleSmallUAV')
 compID = "0";
 else
 compID = idService.getID('comp',Parent);
 end
 % Builder utility function to add port.
 builder.addPort(Name,class,portID,compID);

 % InterfaceName specifies the name of the interface linked to port.
 interfaceName = excelContents.InterfaceName{rowItr};

 % Get interface ID. getID() will return the same IDs already
 % generated while adding interface in Step 2.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder to map interface to port.
 builder.addInterfaceToPort(interfaceID,portID);

 % Reading the connectedTo information to build connections between

 Import System Composer Architecture Using Model Builder

6-43

 % components.
 connectedTo = excelContents.ConnectedTo{rowItr};
 % connectedTo is in format:
 % (DestinationComponentName::DestinationPortName).
 % For this example, considering the current port as source of the connection.
 if ~isempty(connectedTo)
 connID = idService.getID('connection',connectedTo);
 splits = split(connectedTo,'::');
 % Get the port ID of the connected port.
 % In this example, port ID is generated by concatenating
 % port name and parent component name. If port id is already
 % generated getID() function returns the same id for input key.
 connectedPortID = idService.getID('port',strcat(splits(2),splits(1)));
 % Using builder to populate connection table.
 sourcePortID = portID;
 destPortID = connectedPortID;
 % Builder to add connections.
 builder.addConnection(connectedTo,connID,sourcePortID,destPortID);
 end
 end
end

Step 3. Builder build Method Imports Model from Populated Tables

[model,importReport] = builder.build(modelName);

Close Model

bdclose(modelName);

See Also
exportModel | importModel | systemcomposer.io.ModelBuilder

6 Analyze Architecture Model

6-44

More About
• “Import and Export Architecture Models” on page 1-50
• “Import and Export Architectures” on page 6-39

 Import System Composer Architecture Using Model Builder

6-45

Simulating Mobile Robot with System Composer Workflow
Overview

Along with other tools, System Composer™ can help you organize and link requirements, design and
allocate architecture models, analyze the system, and implement the design in Simulink®. This
example demonstrates the workflow for designing a system architecture using System Composer.
This example follows the early phase development for a mobile robot:

• Setting up the requirements based on market research.
• Creating architecture models to help organize algorithms and hardware.
• Creating a Simulink model to simulate realistic behavior of the mobile robot.

This example describes a typical workflow for developing an autonomous mobile robot and
conducting system analysis to ensure that the life expectancy of the durable components in the robot
meets the customer-specified mean time before repair.

This example follows early workflow steps from “Model-Based Design with Simulink”.

6 Analyze Architecture Model

6-46

Organize and Link Requirements

The first step in model-based design is to set up requirements. In this example, there are three sets of
requirements.

1 Stakeholder needs - a set of end-user needs.
2 System requirements - an organized set of requirements that are linked closely with the system-

level design.
3 Implementation requirements - a detailed set of requirements that specify the model's

subsystems.

 Simulating Mobile Robot with System Composer Workflow

6-47

By linking one requirement set to another, each high-level requirement can be traced all the way to
implementation. For more information on requirement links, see “Requirement Links” (Simulink
Requirements).

Link Stakeholder Requirements to Technical Requirements

Navigate to the example folder. To open scMobileRobotStakeholderNeeds.slreqx,
scMobileRobotRequirements.slreqx, and scMobileRobotSubsystemRequirements.slreqx,
double-click each file or run this code in the MATLAB® Command Window:

load_system('scMobileRobotHardwareArchitecture.slx') % Load systems in memory to view requirement links.
load_system('scMobileRobotFunctionalArchitecture.slx')
open('scMobileRobotStakeholderNeeds.slreqx')
open('scMobileRobotRequirements.slreqx')
open('scMobileRobotSubsystemRequirements.slreqx')

Link stakeholder needs to derived requirements to keep track of high-level goals. Some links are
already defined in this example, like the implementation link from STAKEHOLDER-07 to SYSTEM-
REQ-09. This information is saved in the file scMobileRobotStakeholderNeeds.slmx.

6 Analyze Architecture Model

6-48

You can create another link for the Autonomy requirement. The stakeholder's need to relocate an
object with a specified tolerance STAKEHOLDER-04 will be implemented by the system requirement
SYSTEM-REQ-05. The robot must be able to determine its current position with a specified tolerance.
Right-click SYSTEM-REQ-05 and select 'Select for Linking with Requirement'. Then, right-
click on STAKEHOLDER-04 and select Create a link from SYSTEM-REQ-05 to
STAKEHOLDER-04.

More details on the links can be found under View > Links. Change the type of link to Implements
since STAKEHOLDER-04 is implemented by SYSTEM-REQ-05. For more information about link types,
refer to “Define Custom Requirement and Link Types” (Simulink Requirements).

 Simulating Mobile Robot with System Composer Workflow

6-49

Design Architectural Models

Architecture models describe a system at different levels of abstraction. This example presents three
architectures:

1 Functional architecture describes high-level functions.
2 Hardware architecture describes the physical hardware or platform needed for the robot.
3 Logical architecture describes data exchange.

To open the functional architecture, double-click the file or enter the model name into the MATLAB
Command Window.

scMobileRobotFunctionalArchitecture

6 Analyze Architecture Model

6-50

The functional architecture describes functional dependencies: controlling a mobile robot
autonomously, localization, path planning, and path following.

Link Requirements to Architecture Models

Requirement traceability involves linking technical requirements to architecture models, thereby
allowing the connection between an early requirements phase and system-level design. You can more
easily track whether a requirement is met by connecting components back to stakeholder needs. To
view requirements, open the Requirements Manager by accessing Apps > Requirements Manager.

The 'Self Localization Sensor Fusion' component in functional architecture implements the
'Localization' requirement SYSTEM-REQ-05. To show or hide linked requirements, click the
linked icon on the top-right corner of a component.

 Simulating Mobile Robot with System Composer Workflow

6-51

You can add links by dragging requirements to a component.

Open the hardware architecture model. To open the model, double-click the file or enter the model
name in the MATLAB Command Window.

scMobileRobotHardwareArchitecture

The hardware architecture model describes the hardware components — the sensor, actuators, and
embedded processor — and their connections. The colors and icons indicate the stereotypes used for
each element.

You can view the requirements linked to the hardware architecture model in the Requirement
Manager.

6 Analyze Architecture Model

6-52

Only requirements related to 'Life Expectancy' are shown. Link other requirements by dragging
and dropping from the Requirements Editor. For more information about requirements, see “Link and
Trace Requirements” on page 6-25.

Link Functional to Hardware Architecture Using Allocations

You can allocate functional architecture to hardware architecture using the Allocation Editor.

To open the Allocation Editor, click Modeling > Allocation Editor, or enter the following into the
Command Window.

systemcomposer.allocation.editor

Load the allocation set: scAllocationFunctionalHardware.mldatx in the editor. Click on
'Scenario 1'. Click 'Component' in the Row Filter and Column Filter sections to filter rows
and columns by components. The Allocation Editor allows you to link different architecture models to
establish traceability for your project. Components of the functional architecture are allocated to
components of the hardware architecture.

 Simulating Mobile Robot with System Composer Workflow

6-53

Click 'Processor' on the Column Filter to filter the allocations further. Since stereotypes are
applied only to the hardware architecture in this example, the stereotype filter displays in the
Column Filter.

6 Analyze Architecture Model

6-54

The autonomy of a vehicle is mostly handled by a target machine, which is an embedded computer
responsible for processing sensor readings to calculate control inputs. Therefore, many functional
components like 'Path Follower', 'Wheel Kinematics', and 'Scan Matching Algorithms' are
allocated to the 'Target Machine'.

You can add allocations for ports and connectors as well. Double-click the intersections of the table to
allocate or deallocate two elements.For more information on allocation, see “Allocate Architectures in
a Tire Pressure Monitoring System” on page 6-5.

Stereotypes and Analysis

Stereotypes add an additional layer of metadata to components, ports, and connectors. The hardware
architecture provides a basis to understand the applied stereotypes. To create a profile, see “Define
Profiles and Stereotypes” on page 4-2.

In this example, the HardwareBaseStereotype is defined as 'Abstract Stereotype' and is
extended to connector and component stereotypes. For example, a DataConnector stereotype is a
connector stereotype that inherits the HardwareBaseStereotype. Other than properties like name
and mass, the DataConnector stereotype has an additional property, TypeOfConnection, that
describes which of the three connection types — RS232, Ethernet, or USB — it uses. For more
information on setting up profiles, see “Use Stereotypes and Profiles” on page 4-10.

To focus on expected time before first maintenance, define properties such as 'UsagePerDay',
'UsagePerYear', and 'Life'. Setting these properties allows you to analyze each hardware
component to make sure the mobile robot will last until first expected year of maintenance. To open
the Profile Editor, go to Modeling > Profiles > Edit.

 Simulating Mobile Robot with System Composer Workflow

6-55

Once you define stereotypes in the Profile Editor, you can apply them to components and connectors.
Apply stereotypes using the Property Inspector. To open the Property Inspector, go to Modeling >
Design > Property Inspector.

6 Analyze Architecture Model

6-56

To add stereotypes to elements, select the element in the diagram. In the Property Inspector, go to
Main > Stereotype. Multiple stereotypes can be applied to the same element. Apply the
MobileRobotProfile.Sensor stereotype to the Lidar Sensor component to add relevant
properties.

Some components are in use for longer periods of time than others. The Lidar Sensor component
is used for obstacle avoidance in this scenario so it is always in use except when it is charging. The
RGB Camera only aligns the robot to the charging station, so it is in use for a shorter period per day.
You can change values for the 'UsagePerDay', 'UsagePerYear', and 'Life' properties to
determine the expected maintenance time for components that are each used with different
frequency.

The property 'ExceedExpectedMaintenance' is set to 'False' by default. This property will
update when you run your analysis.

Architecture Views Gallery

Use the Architecture Views Gallery to review changes you make in the architecture model.
Architecture views allow you to create filtered views and thereby focus on few elements of the model,
which enables you to navigate a complex model more easily. For example, an electrical engineer
might be interested only in the electrical components of the hardware architecture. The engineer
could apply a filter to show only components with electrical stereotypes.

In this example, you would apply the filter to view components with regard to the 'Life
Expectancy' requirement.

To open the Architecture Views Gallery, go to Views > Architecture Views.

Click New View, then click Select All to select all components for view. Click Apply Query. Select
the Hierarchy Diagram view. The hierarchy of the components is flattened to show all
subcomponents in one view.

 Simulating Mobile Robot with System Composer Workflow

6-57

You can add filter logic to view relevant components for the 'Life Expectancy' requirement. Click
New View, then click Add Clause.

Note that the default value for the MobileRobotProfile.HardwareBaseStereotype.Life
stereotype is 999999. Set the filter to show components with
MobileRobotProfile.HardwareBaseStereotype.Life not equal to 999999, which will indicate
whether or not the stereotype was set.

Click Apply Query. Go to Hierarchy Diagram to view the components of interest.

6 Analyze Architecture Model

6-58

For more information about architecture vews, see “Create Architecture Views Interactively” on page
1-37.

Model Analysis

Analyze the system to check if the components and connectors will last longer than the expected time
before first maintenance. This value is set to 2 years in the analysis function. Open the Analysis
Viewer under Modeling > Views > Analysis Model.

Select all stereotypes to make them available on the instance model. Choose
scMobileRobotAnalysis.m as the analysis function. The iteration order determines in what order
the component hierarchy is analyzed. However, since each component is analyzed separately, the
order does not matter. Select the default 'Pre-order'.

 Simulating Mobile Robot with System Composer Workflow

6-59

Click Instantiate to instantiate the model.

Relevant components and connectors with stereotypes are shown. Since all stereotypes are selected,
all elements with stereotypes are shown in the instance model. Model analysis will calculate which
components and connectors will last longer than the expected 2 years. Click Analyze to perform the
calculation.

6 Analyze Architecture Model

6-60

The analysis function scMobileRobotAnalysis calculates if
UsagePerDay*UsagePerYear*ExpectedYearsBeforeFirstMaintenance will exceed Life,
which is set to 2 years, for each component and connector. The unchecked boxes indicate that
components and connectors will need maintenance within 2 years with the given specification.

To refresh the instance model in the Analysis Viewer, select Overwrite, then click Refresh. This
action will retrieve the values back from the source model, in this case, the hardware architecture
model. Since ExceedExpectedMaintenance was the only property changed, it will be changed to
its default value. Conversely, clicking Update will change the property values in the hardware
architecture source according to the instance model. For more on analysis, see “Analyze
Architecture” on page 6-10.

Simulate Architecture Behavior

You can inspect the logical architecture and link to Simulink behavior models to run the simulation.

To open the logical architecture, double-click the file, or enter the file name in the MATLAB Command
Window.

scMobileRobotLogicalArchitectureInitial

 Simulating Mobile Robot with System Composer Workflow

6-61

The structure of the logical architecture is similar to that of a Simulink model because simulation
models are designed based on the flow of information. The components of the logical architecture
model are linked to behavior models so that the architecture model can be simulated as well. Each
component is responsible for one or more functions defined in the functional architecture model.
'Trajectory Follower' is responsible for calculating the wheel speed of the robot based on the
path the generator created. The lower level 'Motor Controller' controls the speed of each
actuator motor according to the output from the 'Trajectory Follower'.

Note that many components are omitted from this example model. For example, sensor models like
Lidar Sensor and RGB Camera are not required in this model because the true value from
simulation gets the x-y position and orientation of the robot. For more complex simulations, sensor
models like RGB Camera might be added to test different algorithms, such as object recognition. If
such a sensor model was added, for example, Lidar Sensor, another behavior component would be
required to decipher the sensor data, for example, Scan Matching Algorithm.

Add Simulink Behavior to Architecture Models with Bus Ports

Simulate an architecture model by adding Simulink behavior to a component.

Add a new component that would act as a sensor algorithm. Add two input ports and two output
ports.

6 Analyze Architecture Model

6-62

To create a new Simulink behavior, right-click Create Simulink Behavior.

Click OK. The new Simulink model is saved under the current folder. The component Component is
converted to a reference component called Reference Component.

 Simulating Mobile Robot with System Composer Workflow

6-63

To edit the behavioral model, double-click 'Sensor Algorithm'. Observe that bus element ports
are created during the conversion process. For more information on setting bus ports, see “Explore
Simulink Bus Capabilities”.

Any port blocks can be used to connect different components, for example, Inport and Outport.
Delete 'Sensor Reading 2' and 'q'. Create a new Inport and Outport.

Connect the inports to the outports.

Note that in al scenario where sensor models such as RGB Camera and Lidar Sensor are added,
the algorithm model will include tools like a neural network or scan matching method.

Click the pencil button to open Block Parameters. Set 'Sensor Reading 1' Dimensions to 2.

6 Analyze Architecture Model

6-64

Set 'Sensor Reading 2' Port dimensions to 4. Each port corresponds to an x-y position and
quaternion, respectively.

 Simulating Mobile Robot with System Composer Workflow

6-65

Return to the logical architecture and connect the components.

6 Analyze Architecture Model

6-66

The process outlined above is already done in scMobileRobotLogicalArchitecture. Double-click
the file to open the model, or enter the name in the MATLAB Command Window.

scMobileRobotLogicalArchitecture

A behavior algorithm is created based on port information only. When designing a logical
architecture, you can set the interface of the port in more detail. For example, if you know that a 800
x 600 RGB image with 24 frames per second will be transferred from the camera sensor, you can set
the corresponding port interface accordingly to ensure efficient data transfer. For more information
about setting interfaces, see “Define Interfaces” on page 3-2.

Running Simulation from Logical Architecture

Once behavior models are linked, the architecture model can be simulated just like any other
Simulink models by clicking Run.

 Simulating Mobile Robot with System Composer Workflow

6-67

The scope from 'MotorController' shows how well a simple P-gain controller is performing to
follow the reference velocity for one of the wheels on the robot.

6 Analyze Architecture Model

6-68

Run the following script to observe you well the robot follows the waypoints.

out = sim('scMobileRobotLogicalArchitecture.slx');
% waypoints are manually defined in Constant block
waypoints = eval(get_param('TrajectoryGenerator/Manual Waypoints','Value'));

figure
hold on
plot(out.pose.Data(:,1),out.pose.Data(:,2))
plot(waypoints(:,1),waypoints(:,2))
hold off
xlabel('X Position (m)')
ylabel('Y Position (m)')
legend('Actual Trajectory','Commanded Trajectory')

 Simulating Mobile Robot with System Composer Workflow

6-69

See Also

More About
• “Model-Based Design with Simulink”
• “Requirement Links” (Simulink Requirements)
• “Create an Architecture Model” on page 1-2
• “Link and Trace Requirements” on page 6-25
• “Allocate Architectures in a Tire Pressure Monitoring System” on page 6-5
• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-10
• “Analyze Architecture” on page 6-10
• “Explore Simulink Bus Capabilities”
• “Define Interfaces” on page 3-2

6 Analyze Architecture Model

6-70

Software Architectures

• “Author Software Architectures” on page 7-2
• “Simulate and Deploy Software Architectures” on page 7-6
• “Modeling the Software Architecture of a Throttle Position Control System” on page 7-11

7

Author Software Architectures
Software architectures in System Composer provide capabilities to author software architecture
models composed of software components, ports, and interfaces. Use System Composer to design
your software architecture model, simulate your design in the architecture level, and generate code.

Use software architectures to link your Simulink Export-Function, Rate-based or JMAAB models to
components in your architecture model to simulate and generate code.

Create a Software Architecture Model
The workflow for authoring software architecture models is similar to authoring system architectures.
Start with a blank software architecture template to model.

You can create a software architecture programmatically by using the function.
systemcomposer.createModel('mySoftwareArchitectureDesign', 'SoftwareArchitecture'),

where mySoftwareArchitectureDesign is the name of the new model.

You can also use the provided template in the Simulink start page.

From a Simulink model or a System Composer architecture model, on the Simulation tab, select

New , and then select Architecture . Then, select Software Architecture Model.

System Composer opens a new empty software architecture model. Observe the icon on the upper
left corner that distinguishes the empty model from a system architecture.

7 Software Architectures

7-2

When you model software architectures, you can:

• Use model building and visualization tools provided by System Composer such as components,
connections, and ports. For more information, see “Compose Architecture Visually” on page 1-2.

• Define interfaces. For more information, see “Define Interfaces” on page 3-2.
• Create custom views. For more information, see “Create Architecture Views Interactively” on page

1-37.
• Use tools to write analysis and create allocations. For more information, see “Analyze

Architecture” on page 6-10 and “Create and Manage Allocations” on page 6-2.

Build a Simple Software Architecture Model
1 Drag an empty component to the mySoftwareArchitectureDesign model.

 Author Software Architectures

7-3

2 Link this simple Simulink Export-Function model, export_model_software_architecture to
your component by right-clicking the component and selecting Link to model. For more
information about building this Simulink model, see “Create an Export-Function Model”.

3 Connect component input port and output ports to architecture input ports and output ports.

7 Software Architectures

7-4

In this example, you start from a blank template and create a simple software architecture model. To
learn how to simulate a software architecture model and generate code, see “Simulate and Deploy
Software Architectures” on page 7-6.

See Also

More About
• “Compose Architecture Visually” on page 1-2
• “Create an Export-Function Model”

 Author Software Architectures

7-5

Simulate and Deploy Software Architectures
This example shows how to build a multi-component software architecture model with a rate-based
and export-function components, how to simulate your design at the architecture level, and how to
generate code.

Open the Software Architecture Model

This software architecture model has two software components: Export_Function and Rate_Based.

open_system('RateBasedExportFunctionSoftwareArchitectureModel')

In the software architecture model, the Export_Function component is linked to a Simulink® export-
function behavior model, export_model_software_architecture.

In this Simulink behavior, two functions are modeled using Function-Call Subsystem blocks. The
inport blocks are connected to the function-call input ports and generate periodic function-call events
with sample times 10ms and 100ms. To learn how to model this behavior, see “Create an Export-
Function Model”.

7 Software Architectures

7-6

If the inport blocks that are connected to the function-call input ports with sample time specified as
-1, meaning the functions are aperiodic, use a Simulink test model with explicit scheduling blocks
such as a Stateflow chart to simulate. For more information see Test Software Architecture on page 7-
0 .

The Rate_Based component is linked to rate_based_model_software_architecture as the
Simulink behavior model. To learn how to create this rate-based model, see “Create A Rate-Based
Model”.

Simulate the Model with Default Execution Order

Simulate the model. Observe that the Simulation Data Inspector displays the output from the Rate-
Based component.

To see and change the default execution order of the functions, you can use the Scheduling Editor.
For more information, see “Using the Schedule Editor”.

 Simulate and Deploy Software Architectures

7-7

Test Software Architecture

You can test a software architecture model and simulate different execution orders of functions by
referencing it from a Model block in a Simulink test model with explicit scheduling blocks such as
Stateflow® Chart (Stateflow).

In this example, a Model block that references a software architecture model has a function-call input
port for each function in the architecture model.

To simulate the architecture model with a Stateflow chart periodic scheduler, connect the Stateflow
chart function-call outputs to the Model block function-call inputs.

7 Software Architectures

7-8

Deploy Software Architecture

You can generate code from the software architecture model for the functions of the export-function
and rate-based components.

To generate code, from the Apps tab, select Embedded Coder. On the C Code tab, select Generate
Code. The generated code contains an entry-point for each function of the component. For more
information, see “Generate Code for Export-Function Model”.

For the export-function component, it generated the two functions that correspond to the function-
call inport blocks inside the referenced export-function model.

Observe that, each rate-based component has separate entry point functions that correspond to each
sample time in the referenced rate based model.

 Simulate and Deploy Software Architectures

7-9

See Also

More About
• “Author Software Architectures” on page 7-2
• “Compose Architecture Visually” on page 1-2
• “Create an Export-Function Model”
• “Create A Rate-Based Model”

7 Software Architectures

7-10

Modeling the Software Architecture of a Throttle Position
Control System

This example shows how to author the software architecture of a throttle position control system in
System Composer®, schedule and simulate the execution order of the functions from its components,
and generate code.

Throttle Control Composition

In this example, the software architecture of a throttle position control system is modeled in System
Composer using six components. The throttle position control component reads the throttle and pedal
positions and outputs the new throttle position. Two throttle position sensor components provide the
current position of the throttle, and a pedal position sensor component provides the applied pedal
position. These signals are used by a controller component to determine the new throttle position.

model = systemcomposer.openModel('ThrottleControlComposition');

Simulate the Model at the Architecture Level

Simulate the software architecture model.

sim('ThrottleControlComposition');

To view and change the default execution order of the functions from the components, use the
Schedule Editor. To open the Schedule Editor, on the Modeling tab, in the Design section, click
Schedule Editor. For more information about scheduling functions with the Schedule Editor, see
Schedule an Export-Function Model Using the Schedule Editor.

 Modeling the Software Architecture of a Throttle Position Control System

7-11

https://www.mathworks.com/help/simulink/slref/scheduleexportfunctionwithscheduleeditor.html

Simulate the Model at the System Level

To simulate the throttle control system with the throttle body, use a Model block to reference the
software architecture model in the system model. The ThrottleControlSystem model also
contains a Stateflow® Chart block to model a more complex scheduling of the functions of the
software architecture.

open_system('ThrottleControlSystem');

7 Software Architectures

7-12

To simulate the system model containing the plant and Stateflow scheduler, use the command:

sim('ThrottleControlSystem');

 Modeling the Software Architecture of a Throttle Position Control System

7-13

Code Generation

After simulation, you can generate code to deploy the control system to the target hardware. Code
generation requires an Embedded Coder® license. Open the ThrottleControlComposition
model and execute the slbuild command, or press Ctrl+B to build the model and generate code.

slbuild('ThrottleControlComposition');

The generated code contains an entry-point function for each function of the components in the
software architecture. For more information on code generation for export-function models, see
Generate Code for Export-Function Model.

7 Software Architectures

7-14

https://www.mathworks.com/help/simulink/ug/generate-code-for-export-function-model.html

Copyright 2020 The MathWorks, Inc.

 Modeling the Software Architecture of a Throttle Position Control System

7-15

	Architecture Model Editing
	Compose Architecture Visually
	Create an Architecture Model
	Components
	Ports
	Connections
	Importing Architectures

	Decompose and Reuse Components
	Decompose a Component
	Create a Reference Architecture
	Use a Reference Architecture
	Inline a Reference Architecture
	Create Variants

	Create Spotlight Views
	Build an Architecture Model from Command Line
	Create Architecture Views Interactively
	Create Filtered Views with Grouping Criteria
	Interactively Add and Remove Elements from Views
	Add or Remove Requirements Links from Views

	Create Architectural Views Programmatically
	Architecture Views in System Composer with Keyless Entry System
	Find Elements in a Model Using Queries

	Import and Export Architecture Models
	Define a Basic Architecture
	Import a Basic Architecture
	Extend the Basic Architecture Import
	Export an Architecture
	Update Reference Requirement Links from Imported File

	Display Component Hierarchy Using Hierarchy Views
	Switch Between Component Diagram and Hierarchy Diagram

	Requirements
	Manage Requirements

	Interface Management
	Define Interfaces
	Create Interface
	Nested Interfaces
	Show and Hide Columns in the Interface Editor

	Assign Interfaces to Ports
	Associate a Port with an Interface in the Property Inspector
	Select Multiple Ports and Assign an Interface
	Specify a Source Element or Destination Element for Ports on a Connection
	Reconcile Different Interfaces on Connected Ports using an Adapter block

	Save, Link, and Delete Interfaces
	Reference Data Dictionaries
	Add Referenced Data Dictionaries
	Use Referenced Data Dictionaries for Projects with Multiple Models

	Interface Adapter
	Map Similar Interfaces
	Use Unit Delay to Break Algebraic Loop
	Use Rate Transition Between Simulink Behaviors

	Define Architectural Properties
	Define Profiles and Stereotypes
	Create a Profile and Add Stereotypes
	Add Properties with Stereotypes
	Default Stereotypes
	Stereotype-Based Styling

	Use Stereotypes and Profiles
	Import Profiles
	Apply a Stereotype
	Remove a Stereotype
	Extend a Stereotype

	Use Simulink Models with System Composer
	Implement Component Behavior in Simulink
	Create a Simulink Behavior Model
	Link to an Existing Simulink Behavior Model
	Create a Simulink Behavior from Template for a Component

	Add Stateflow Chart Behavior to Architecture Component
	Add State Chart Behavior to a Component
	Inline Stateflow Chart Behavior

	Extract Architecture from Simulink Model
	Define Sequence Diagrams
	Add Lifelines and Messages
	Add Fragments and Operands
	View the Define Sequence Diagrams Example

	Use Sequence Diagrams in the Views Gallery
	Create a Sequence Diagram
	Create Sequence Diagram Gates
	Add Child Lifelines in a Sequence Diagram
	Co-Create Components
	Synchronize Between the Sequence Diagram and the Model
	Create Messages in the Sequence Diagram
	Click and Drag from the Model Browser
	Use Sequence Diagrams in the Views Gallery Example
	Create a Sequence Diagram from a View

	Analyze Architecture Model
	Create and Manage Allocations
	Allocate Architectures in a Tire Pressure Monitoring System
	Analyze Architecture
	Set Properties for Analysis
	Create a Model Instance for Analysis
	Write Analysis Function
	Run Analysis Function

	Battery Sizing and Automotive Electrical System Analysis
	Modeling System Architecture of Small UAV
	Link and Trace Requirements
	Modeling System Architecture of Keyless Entry System
	Extract the Architecture of a Simulink Model Using System Composer
	Import and Export Architectures
	Import System Composer Architecture Using Model Builder
	Simulating Mobile Robot with System Composer Workflow

	Software Architectures
	Author Software Architectures
	Create a Software Architecture Model
	Build a Simple Software Architecture Model

	Simulate and Deploy Software Architectures
	Modeling the Software Architecture of a Throttle Position Control System

